Properties

Label 144150ee
Number of curves $1$
Conductor $144150$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ee1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 144150ee1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 144150ee do not have complex multiplication.

Modular form 144150.2.a.ee

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} + 2 q^{11} - q^{12} - 2 q^{13} + q^{16} + 3 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 144150ee

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
144150.p1 144150ee1 \([1, 1, 0, 12180175, 8662576725]\) \(12093415625/8957952\) \(-148028041383391941120000\) \([]\) \(13999104\) \(3.1342\) \(\Gamma_0(N)\)-optimal