Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-300x+2050\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-300xz^2+2050z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-300x+2050\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(11, 9)$ | $1.1360511885423769226469424154$ | $\infty$ |
Integral points
\((11,\pm 9)\)
Invariants
| Conductor: | $N$ | = | \( 14400 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-87480000$ | = | $-1 \cdot 2^{6} \cdot 3^{7} \cdot 5^{4} $ |
|
| j-invariant: | $j$ | = | \( -\frac{102400}{3} \) | = | $-1 \cdot 2^{12} \cdot 3^{-1} \cdot 5^{2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.30278140051935468572104674793$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1295776382393729395521117090$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0439051029424253$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.0051577347632192$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1360511885423769226469424154$ |
|
| Real period: | $\Omega$ | ≈ | $1.9063287619294404024675129706$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.3313741114849173376941236843 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.331374111 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.906329 \cdot 1.136051 \cdot 2}{1^2} \\ & \approx 4.331374111\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3840 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | 1 | 6 | 6 | 0 |
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $5$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5B.4.2 | 5.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 3 & 10 \\ 20 & 19 \end{array}\right),\left(\begin{array}{rr} 31 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 111 & 10 \\ 110 & 11 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 5 & 26 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 65 & 1 \end{array}\right),\left(\begin{array}{rr} 114 & 107 \\ 115 & 119 \end{array}\right),\left(\begin{array}{rr} 59 & 0 \\ 0 & 119 \end{array}\right),\left(\begin{array}{rr} 21 & 10 \\ 20 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$737280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 225 = 3^{2} \cdot 5^{2} \) |
| $3$ | additive | $8$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
| $5$ | additive | $14$ | \( 576 = 2^{6} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 14400.z
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 75.c1, its twist by $-24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.300.1 | \(\Z/2\Z\) | not in database |
| $4$ | 4.4.72000.1 | \(\Z/5\Z\) | not in database |
| $6$ | 6.0.270000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.453496320000.4 | \(\Z/3\Z\) | not in database |
| $10$ | 10.0.31492800000000000.24 | \(\Z/5\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | - | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.