Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
75.a1 |
75c2 |
75.a |
75c |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \) |
\( - 3 \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.3 |
5B.1.2 |
$30$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$30$ |
$0.211621$ |
$-102400/3$ |
$1.04391$ |
$6.41123$ |
$[0, 1, 1, -208, -1256]$ |
\(y^2+y=x^3+x^2-208x-1256\) |
5.24.0-5.a.2.2, 6.2.0.a.1, 30.48.1-30.d.2.4 |
$[ ]$ |
75.c1 |
75a1 |
75.c |
75a |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \) |
\( - 3 \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$30$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$-0.593099$ |
$-102400/3$ |
$1.04391$ |
$4.17460$ |
$[0, -1, 1, -8, -7]$ |
\(y^2+y=x^3-x^2-8x-7\) |
5.24.0-5.a.2.1, 6.2.0.a.1, 30.48.1-30.d.2.3 |
$[ ]$ |
225.a1 |
225e1 |
225.a |
225e |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{7} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$30$ |
$48$ |
$1$ |
$0.025588090$ |
$1$ |
|
$18$ |
$48$ |
$-0.043792$ |
$-102400/3$ |
$1.04391$ |
$4.54487$ |
$[0, 0, 1, -75, 256]$ |
\(y^2+y=x^3-75x+256\) |
5.12.0.a.2, 6.2.0.a.1, 10.24.0-5.a.2.1, 15.24.0-5.a.2.2, 30.48.1-30.d.2.1 |
$[(-5, 22)]$ |
225.e1 |
225d2 |
225.e |
225d |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{7} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$30$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$240$ |
$0.760927$ |
$-102400/3$ |
$1.04391$ |
$6.32781$ |
$[0, 0, 1, -1875, 32031]$ |
\(y^2+y=x^3-1875x+32031\) |
5.12.0.a.2, 6.2.0.a.1, 10.24.0-5.a.2.2, 15.24.0-5.a.2.1, 30.48.1-30.d.2.2 |
$[ ]$ |
1200.c1 |
1200k2 |
1200.c |
1200k |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$60$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1200$ |
$0.904768$ |
$-102400/3$ |
$1.04391$ |
$5.07726$ |
$[0, -1, 0, -3333, 77037]$ |
\(y^2=x^3-x^2-3333x+77037\) |
5.12.0.a.2, 6.2.0.a.1, 20.24.0-5.a.2.2, 30.24.1.d.2, 60.48.1-30.d.2.4 |
$[ ]$ |
1200.p1 |
1200r1 |
1200.p |
1200r |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$60$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$240$ |
$0.100049$ |
$-102400/3$ |
$1.04391$ |
$3.71527$ |
$[0, 1, 0, -133, 563]$ |
\(y^2=x^3+x^2-133x+563\) |
5.12.0.a.2, 6.2.0.a.1, 20.24.0-5.a.2.1, 30.24.1.d.2, 60.48.1-30.d.2.3 |
$[ ]$ |
3600.j1 |
3600bj2 |
3600.j |
3600bj |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$60$ |
$48$ |
$1$ |
$4.591654055$ |
$1$ |
|
$2$ |
$9600$ |
$1.454075$ |
$-102400/3$ |
$1.04391$ |
$5.20106$ |
$[0, 0, 0, -30000, -2050000]$ |
\(y^2=x^3-30000x-2050000\) |
5.12.0.a.2, 6.2.0.a.1, 20.24.0-5.a.2.4, 30.24.1.d.2, 60.48.1-30.d.2.2 |
$[(289, 3663)]$ |
3600.bk1 |
3600bp1 |
3600.bk |
3600bp |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{12} \cdot 3^{7} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$60$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1920$ |
$0.649355$ |
$-102400/3$ |
$1.04391$ |
$4.02179$ |
$[0, 0, 0, -1200, -16400]$ |
\(y^2=x^3-1200x-16400\) |
5.12.0.a.2, 6.2.0.a.1, 20.24.0-5.a.2.3, 30.24.1.d.2, 60.48.1-30.d.2.1 |
$[ ]$ |
3675.b1 |
3675f2 |
3675.b |
3675f |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 3 \cdot 5^{10} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$9900$ |
$1.184576$ |
$-102400/3$ |
$1.04391$ |
$4.79405$ |
$[0, -1, 1, -10208, 410318]$ |
\(y^2+y=x^3-x^2-10208x+410318\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 35.24.0-5.a.2.2, 210.48.1.? |
$[ ]$ |
3675.q1 |
3675q1 |
3675.q |
3675q |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 3 \cdot 5^{4} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1980$ |
$0.379857$ |
$-102400/3$ |
$1.04391$ |
$3.61775$ |
$[0, 1, 1, -408, 3119]$ |
\(y^2+y=x^3+x^2-408x+3119\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 35.24.0-5.a.2.1, 210.48.1.? |
$[ ]$ |
4800.bb1 |
4800e2 |
4800.bb |
4800e |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \) |
\( - 2^{6} \cdot 3 \cdot 5^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$7.900543714$ |
$1$ |
|
$0$ |
$2400$ |
$0.558194$ |
$-102400/3$ |
$1.04391$ |
$3.75624$ |
$[0, -1, 0, -833, -9213]$ |
\(y^2=x^3-x^2-833x-9213\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.3, 120.48.1.? |
$[(1894/7, 41791/7)]$ |
4800.be1 |
4800bw1 |
4800.be |
4800bw |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \) |
\( - 2^{6} \cdot 3 \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$0.361835155$ |
$1$ |
|
$4$ |
$480$ |
$-0.246525$ |
$-102400/3$ |
$1.04391$ |
$2.61700$ |
$[0, -1, 0, -33, 87]$ |
\(y^2=x^3-x^2-33x+87\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.2, 120.48.1.? |
$[(2, 5)]$ |
4800.bq1 |
4800bf1 |
4800.bq |
4800bf |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \) |
\( - 2^{6} \cdot 3 \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$1.385300339$ |
$1$ |
|
$2$ |
$480$ |
$-0.246525$ |
$-102400/3$ |
$1.04391$ |
$2.61700$ |
$[0, 1, 0, -33, -87]$ |
\(y^2=x^3+x^2-33x-87\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.4, 120.48.1.? |
$[(8, 15)]$ |
4800.br1 |
4800cg2 |
4800.br |
4800cg |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \) |
\( - 2^{6} \cdot 3 \cdot 5^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$2.859650869$ |
$1$ |
|
$2$ |
$2400$ |
$0.558194$ |
$-102400/3$ |
$1.04391$ |
$3.75624$ |
$[0, 1, 0, -833, 9213]$ |
\(y^2=x^3+x^2-833x+9213\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.1, 120.48.1.? |
$[(12, 33)]$ |
9075.a1 |
9075j1 |
9075.a |
9075j |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 3 \cdot 5^{4} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$330$ |
$48$ |
$1$ |
$0.749044090$ |
$1$ |
|
$4$ |
$8400$ |
$0.605849$ |
$-102400/3$ |
$1.04391$ |
$3.55648$ |
$[0, -1, 1, -1008, 12968]$ |
\(y^2+y=x^3-x^2-1008x+12968\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 55.24.0-5.a.2.2, 330.48.1.? |
$[(26, 60)]$ |
9075.s1 |
9075n2 |
9075.s |
9075n |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 3 \cdot 5^{10} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$330$ |
$48$ |
$1$ |
$7.370491957$ |
$1$ |
|
$0$ |
$42000$ |
$1.410568$ |
$-102400/3$ |
$1.04391$ |
$4.61610$ |
$[0, 1, 1, -25208, 1570619]$ |
\(y^2+y=x^3+x^2-25208x+1570619\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 55.24.0-5.a.2.1, 330.48.1.? |
$[(-3051/10, 1520107/10)]$ |
11025.a1 |
11025bp1 |
11025.a |
11025bp |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{7} \cdot 5^{4} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$15840$ |
$0.929163$ |
$-102400/3$ |
$1.04391$ |
$3.89893$ |
$[0, 0, 1, -3675, -87894]$ |
\(y^2+y=x^3-3675x-87894\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 70.24.0-5.a.2.1, 105.24.0.?, $\ldots$ |
$[ ]$ |
11025.bn1 |
11025bc2 |
11025.bn |
11025bc |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{7} \cdot 5^{10} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$16.02599794$ |
$1$ |
|
$0$ |
$79200$ |
$1.733881$ |
$-102400/3$ |
$1.04391$ |
$4.93639$ |
$[0, 0, 1, -91875, -10986719]$ |
\(y^2+y=x^3-91875x-10986719\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 70.24.0-5.a.2.2, 105.24.0.?, $\ldots$ |
$[(35569081/50, 212084744729/50)]$ |
12675.d1 |
12675s1 |
12675.d |
12675s |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{4} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$390$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$14040$ |
$0.689376$ |
$-102400/3$ |
$1.04391$ |
$3.53680$ |
$[0, -1, 1, -1408, -20382]$ |
\(y^2+y=x^3-x^2-1408x-20382\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 65.24.0-5.a.2.2, 390.48.1.? |
$[ ]$ |
12675.bk1 |
12675bb2 |
12675.bk |
12675bb |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{10} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$390$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$70200$ |
$1.494095$ |
$-102400/3$ |
$1.04391$ |
$4.55894$ |
$[0, 1, 1, -35208, -2618131]$ |
\(y^2+y=x^3+x^2-35208x-2618131\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 65.24.0-5.a.2.1, 390.48.1.? |
$[ ]$ |
14400.u1 |
14400eb2 |
14400.u |
14400eb |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$7.915101915$ |
$1$ |
|
$0$ |
$19200$ |
$1.107500$ |
$-102400/3$ |
$1.04391$ |
$4.01368$ |
$[0, 0, 0, -7500, -256250]$ |
\(y^2=x^3-7500x-256250\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.5, 120.48.1.? |
$[(6959/5, 548073/5)]$ |
14400.z1 |
14400cm1 |
14400.z |
14400cm |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$1.136051188$ |
$1$ |
|
$2$ |
$3840$ |
$0.302782$ |
$-102400/3$ |
$1.04391$ |
$3.00516$ |
$[0, 0, 0, -300, 2050]$ |
\(y^2=x^3-300x+2050\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.8, 120.48.1.? |
$[(11, 9)]$ |
14400.em1 |
14400fa1 |
14400.em |
14400fa |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3840$ |
$0.302782$ |
$-102400/3$ |
$1.04391$ |
$3.00516$ |
$[0, 0, 0, -300, -2050]$ |
\(y^2=x^3-300x-2050\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.6, 120.48.1.? |
$[ ]$ |
14400.ep1 |
14400bl2 |
14400.ep |
14400bl |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$120$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$19200$ |
$1.107500$ |
$-102400/3$ |
$1.04391$ |
$4.01368$ |
$[0, 0, 0, -7500, 256250]$ |
\(y^2=x^3-7500x+256250\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 40.24.0-5.a.2.7, 120.48.1.? |
$[ ]$ |
21675.a1 |
21675i2 |
21675.a |
21675i |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{10} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$510$ |
$48$ |
$1$ |
$4.642942320$ |
$1$ |
|
$0$ |
$153600$ |
$1.628227$ |
$-102400/3$ |
$1.04391$ |
$4.47517$ |
$[0, -1, 1, -60208, -5808432]$ |
\(y^2+y=x^3-x^2-60208x-5808432\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 85.24.0.?, 510.48.1.? |
$[(1197/2, 13579/2)]$ |
21675.bb1 |
21675z1 |
21675.bb |
21675z |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 17^{2} \) |
\( - 3 \cdot 5^{4} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$510$ |
$48$ |
$1$ |
$6.433596029$ |
$1$ |
|
$0$ |
$30720$ |
$0.823508$ |
$-102400/3$ |
$1.04391$ |
$3.50795$ |
$[0, 1, 1, -2408, -47431]$ |
\(y^2+y=x^3+x^2-2408x-47431\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 85.24.0.?, 510.48.1.? |
$[(25293/14, 3687713/14)]$ |
27075.e1 |
27075w1 |
27075.e |
27075w |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 3 \cdot 5^{4} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$40500$ |
$0.879121$ |
$-102400/3$ |
$1.04391$ |
$3.49688$ |
$[0, 1, 1, -3008, 64094]$ |
\(y^2+y=x^3+x^2-3008x+64094\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 95.24.0.?, 570.48.1.? |
$[ ]$ |
27075.u1 |
27075i2 |
27075.u |
27075i |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 3 \cdot 5^{10} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$202500$ |
$1.683840$ |
$-102400/3$ |
$1.04391$ |
$4.44302$ |
$[0, -1, 1, -75208, 8162193]$ |
\(y^2+y=x^3-x^2-75208x+8162193\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 95.24.0.?, 570.48.1.? |
$[ ]$ |
27225.b1 |
27225bs2 |
27225.b |
27225bs |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 3^{7} \cdot 5^{10} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$330$ |
$48$ |
$1$ |
$5.479906245$ |
$1$ |
|
$0$ |
$336000$ |
$1.959875$ |
$-102400/3$ |
$1.04391$ |
$4.76498$ |
$[0, 0, 1, -226875, -42633594]$ |
\(y^2+y=x^3-226875x-42633594\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 110.24.0.?, 165.24.0.?, $\ldots$ |
$[(6809/2, 536873/2)]$ |
27225.bz1 |
27225ca1 |
27225.bz |
27225ca |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 3^{7} \cdot 5^{4} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$330$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$67200$ |
$1.155155$ |
$-102400/3$ |
$1.04391$ |
$3.81935$ |
$[0, 0, 1, -9075, -341069]$ |
\(y^2+y=x^3-9075x-341069\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 110.24.0.?, 165.24.0.?, $\ldots$ |
$[ ]$ |
38025.b1 |
38025bt2 |
38025.b |
38025bt |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 5^{10} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$390$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$561600$ |
$2.043400$ |
$-102400/3$ |
$1.04391$ |
$4.70906$ |
$[0, 0, 1, -316875, 70372656]$ |
\(y^2+y=x^3-316875x+70372656\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 130.24.0.?, 195.24.0.?, $\ldots$ |
$[ ]$ |
38025.dc1 |
38025cp1 |
38025.dc |
38025cp |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 5^{4} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$390$ |
$48$ |
$1$ |
$4.414998790$ |
$1$ |
|
$0$ |
$112320$ |
$1.238682$ |
$-102400/3$ |
$1.04391$ |
$3.79340$ |
$[0, 0, 1, -12675, 562981]$ |
\(y^2+y=x^3-12675x+562981\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 130.24.0.?, 195.24.0.?, $\ldots$ |
$[(361/2, 3137/2)]$ |
39675.e1 |
39675bi2 |
39675.e |
39675bi |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 3 \cdot 5^{10} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$690$ |
$48$ |
$1$ |
$3.381087463$ |
$1$ |
|
$0$ |
$356400$ |
$1.779367$ |
$-102400/3$ |
$1.04391$ |
$4.39094$ |
$[0, 1, 1, -110208, 14397494]$ |
\(y^2+y=x^3+x^2-110208x+14397494\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 115.24.0.?, 690.48.1.? |
$[(773/2, 4757/2)]$ |
39675.br1 |
39675w1 |
39675.br |
39675w |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 3 \cdot 5^{4} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$690$ |
$48$ |
$1$ |
$1.872227435$ |
$1$ |
|
$0$ |
$71280$ |
$0.974648$ |
$-102400/3$ |
$1.04391$ |
$3.47895$ |
$[0, -1, 1, -4408, 116943]$ |
\(y^2+y=x^3-x^2-4408x+116943\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 115.24.0.?, 690.48.1.? |
$[(-267/2, 2641/2)]$ |
58800.bf1 |
58800hc1 |
58800.bf |
58800hc |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{4} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$420$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$79200$ |
$1.073004$ |
$-102400/3$ |
$1.04391$ |
$3.46179$ |
$[0, -1, 0, -6533, -206163]$ |
\(y^2=x^3-x^2-6533x-206163\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 140.24.0.?, 420.48.1.? |
$[ ]$ |
58800.gs1 |
58800ij2 |
58800.gs |
58800ij |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3 \cdot 5^{10} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$420$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$396000$ |
$1.877724$ |
$-102400/3$ |
$1.04391$ |
$4.34111$ |
$[0, 1, 0, -163333, -26097037]$ |
\(y^2=x^3+x^2-163333x-26097037\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 140.24.0.?, 420.48.1.? |
$[ ]$ |
63075.c1 |
63075v1 |
63075.c |
63075v |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( - 3 \cdot 5^{4} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$870$ |
$48$ |
$1$ |
$6.221095725$ |
$1$ |
|
$0$ |
$134400$ |
$1.090549$ |
$-102400/3$ |
$1.04391$ |
$3.45886$ |
$[0, 1, 1, -7008, -233806]$ |
\(y^2+y=x^3+x^2-7008x-233806\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 145.24.0.?, 870.48.1.? |
$[(9701/10, 92851/10)]$ |
63075.y1 |
63075d2 |
63075.y |
63075d |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( - 3 \cdot 5^{10} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$870$ |
$48$ |
$1$ |
$50.55290563$ |
$1$ |
|
$0$ |
$672000$ |
$1.895269$ |
$-102400/3$ |
$1.04391$ |
$4.33259$ |
$[0, -1, 1, -175208, -28875307]$ |
\(y^2+y=x^3-x^2-175208x-28875307\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 145.24.0.?, 870.48.1.? |
$[(202314957801095488775101/15602540870, 75851789974049545828736171294391451/15602540870)]$ |
65025.f1 |
65025ck1 |
65025.f |
65025ck |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{4} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$510$ |
$48$ |
$1$ |
$1.525193509$ |
$1$ |
|
$4$ |
$245760$ |
$1.372814$ |
$-102400/3$ |
$1.04391$ |
$3.75499$ |
$[0, 0, 1, -21675, 1258956]$ |
\(y^2+y=x^3-21675x+1258956\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 170.24.0.?, 255.24.0.?, $\ldots$ |
$[(-136, 1300)]$ |
65025.ch1 |
65025bt2 |
65025.ch |
65025bt |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 17^{2} \) |
\( - 3^{7} \cdot 5^{10} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$510$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1228800$ |
$2.177532$ |
$-102400/3$ |
$1.04391$ |
$4.62632$ |
$[0, 0, 1, -541875, 157369531]$ |
\(y^2+y=x^3-541875x+157369531\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 170.24.0.?, 255.24.0.?, $\ldots$ |
$[ ]$ |
72075.c1 |
72075m2 |
72075.c |
72075m |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 3 \cdot 5^{10} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$930$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$913500$ |
$1.928614$ |
$-102400/3$ |
$1.04391$ |
$4.31670$ |
$[0, -1, 1, -200208, 35409068]$ |
\(y^2+y=x^3-x^2-200208x+35409068\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 155.24.0.?, 930.48.1.? |
$[ ]$ |
72075.bo1 |
72075bo1 |
72075.bo |
72075bo |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 31^{2} \) |
\( - 3 \cdot 5^{4} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$930$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$182700$ |
$1.123896$ |
$-102400/3$ |
$1.04391$ |
$3.45338$ |
$[0, 1, 1, -8008, 280069]$ |
\(y^2+y=x^3+x^2-8008x+280069\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 155.24.0.?, 930.48.1.? |
$[ ]$ |
81225.d1 |
81225bl2 |
81225.d |
81225bl |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{7} \cdot 5^{10} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$12.26737997$ |
$1$ |
|
$0$ |
$1620000$ |
$2.233147$ |
$-102400/3$ |
$1.04391$ |
$4.59432$ |
$[0, 0, 1, -676875, -219702344]$ |
\(y^2+y=x^3-676875x-219702344\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 190.24.0.?, 285.24.0.?, $\ldots$ |
$[(746041/14, 627832967/14)]$ |
81225.bp1 |
81225bs1 |
81225.bp |
81225bs |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{7} \cdot 5^{4} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$324000$ |
$1.428427$ |
$-102400/3$ |
$1.04391$ |
$3.74013$ |
$[0, 0, 1, -27075, -1757619]$ |
\(y^2+y=x^3-27075x-1757619\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 190.24.0.?, 285.24.0.?, $\ldots$ |
$[ ]$ |
102675.a1 |
102675o1 |
102675.a |
102675o |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 37^{2} \) |
\( - 3 \cdot 5^{4} \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1110$ |
$48$ |
$1$ |
$1.705392300$ |
$1$ |
|
$12$ |
$311040$ |
$1.212360$ |
$-102400/3$ |
$1.04391$ |
$3.43948$ |
$[0, -1, 1, -11408, -476932]$ |
\(y^2+y=x^3-x^2-11408x-476932\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 185.24.0.?, 1110.48.1.? |
$[(247, 3422), (136, 684)]$ |
102675.w1 |
102675t2 |
102675.w |
102675t |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 37^{2} \) |
\( - 3 \cdot 5^{10} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1110$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$1555200$ |
$2.017078$ |
$-102400/3$ |
$1.04391$ |
$4.27633$ |
$[0, 1, 1, -285208, -60186881]$ |
\(y^2+y=x^3+x^2-285208x-60186881\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 185.24.0.?, 1110.48.1.? |
$[ ]$ |
119025.l1 |
119025cw1 |
119025.l |
119025cw |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 3^{7} \cdot 5^{4} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$690$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$570240$ |
$1.523954$ |
$-102400/3$ |
$1.04391$ |
$3.71593$ |
$[0, 0, 1, -39675, -3117794]$ |
\(y^2+y=x^3-39675x-3117794\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 230.24.0.?, 345.24.0.?, $\ldots$ |
$[ ]$ |
119025.co1 |
119025bs2 |
119025.co |
119025bs |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 3^{7} \cdot 5^{10} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$690$ |
$48$ |
$1$ |
$39.42699799$ |
$1$ |
|
$0$ |
$2851200$ |
$2.328674$ |
$-102400/3$ |
$1.04391$ |
$4.54220$ |
$[0, 0, 1, -991875, -389724219]$ |
\(y^2+y=x^3-991875x-389724219\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 230.24.0.?, 345.24.0.?, $\ldots$ |
$[(7018707435336083969/60833410, 15187504657554309978997748203/60833410)]$ |
126075.a1 |
126075l2 |
126075.a |
126075l |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 41^{2} \) |
\( - 3 \cdot 5^{10} \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1230$ |
$48$ |
$1$ |
$8.566302120$ |
$1$ |
|
$0$ |
$2040000$ |
$2.068405$ |
$-102400/3$ |
$1.04391$ |
$4.25401$ |
$[0, -1, 1, -350208, -81647182]$ |
\(y^2+y=x^3-x^2-350208x-81647182\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 205.24.0.?, 1230.48.1.? |
$[(181021/10, 72200131/10)]$ |
126075.bg1 |
126075be1 |
126075.bg |
126075be |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 41^{2} \) |
\( - 3 \cdot 5^{4} \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1230$ |
$48$ |
$1$ |
$44.83439914$ |
$1$ |
|
$0$ |
$408000$ |
$1.263687$ |
$-102400/3$ |
$1.04391$ |
$3.43180$ |
$[0, 1, 1, -14008, -658781]$ |
\(y^2+y=x^3+x^2-14008x-658781\) |
5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 205.24.0.?, 1230.48.1.? |
$[(812197070076044241061/2411520090, 5020811590427690415274677245491/2411520090)]$ |