Show commands: SageMath
Rank
The elliptic curves in class 143650bz have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 143650bz do not have complex multiplication.Modular form 143650.2.a.bz
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 143650bz
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
143650.v4 | 143650bz1 | \([1, 1, 0, -23417150, 43606220000]\) | \(18829800329506921/179562500\) | \(13542404547851562500\) | \([2]\) | \(9289728\) | \(2.8331\) | \(\Gamma_0(N)\)-optimal |
143650.v3 | 143650bz2 | \([1, 1, 0, -23966400, 41452610750]\) | \(20186080966364041/1834472656250\) | \(138353892616271972656250\) | \([2]\) | \(18579456\) | \(3.1797\) | |
143650.v2 | 143650bz3 | \([1, 1, 0, -35564025, -6328526875]\) | \(65959341605440921/37942580187200\) | \(2861587305168728825000000\) | \([2]\) | \(27869184\) | \(3.3824\) | |
143650.v1 | 143650bz4 | \([1, 1, 0, -406857025, -3151551529875]\) | \(98757259854107414041/265151195465000\) | \(19997409009862831015625000\) | \([2]\) | \(55738368\) | \(3.7290\) |