Properties

Label 143550.q
Number of curves $2$
Conductor $143550$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 143550.q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(29\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143550.q do not have complex multiplication.

Modular form 143550.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} - q^{11} - 2 q^{13} + 2 q^{14} + q^{16} - 3 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 143550.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143550.q1 143550ed2 \([1, -1, 0, -6324417, 6124375741]\) \(-2456052741013136329/463586112000\) \(-5280535557000000000\) \([]\) \(5971968\) \(2.5940\)  
143550.q2 143550ed1 \([1, -1, 0, 23958, 28265116]\) \(133511182631/30389764680\) \(-346158413308125000\) \([]\) \(1990656\) \(2.0447\) \(\Gamma_0(N)\)-optimal