Show commands: SageMath
Rank
The elliptic curves in class 143344.m have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 143344.m do not have complex multiplication.Modular form 143344.2.a.m
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 143344.m
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 143344.m1 | 143344h4 | \([0, 0, 0, -1529099, -727782342]\) | \(3999236143617/62\) | \(6129783922688\) | \([2]\) | \(884736\) | \(2.0017\) | |
| 143344.m2 | 143344h3 | \([0, 0, 0, -141899, 756602]\) | \(3196010817/1847042\) | \(182612392840798208\) | \([2]\) | \(884736\) | \(2.0017\) | |
| 143344.m3 | 143344h2 | \([0, 0, 0, -95659, -11349030]\) | \(979146657/3844\) | \(380046603206656\) | \([2, 2]\) | \(442368\) | \(1.6551\) | |
| 143344.m4 | 143344h1 | \([0, 0, 0, -3179, -343910]\) | \(-35937/496\) | \(-49038271381504\) | \([2]\) | \(221184\) | \(1.3085\) | \(\Gamma_0(N)\)-optimal |