Properties

Label 142296.r
Number of curves $1$
Conductor $142296$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 142296.r1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 - 3 T + 13 T^{2}\) 1.13.ad
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 142296.r do not have complex multiplication.

Modular form 142296.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + 3 q^{13} + q^{15} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 142296.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
142296.r1 142296bc1 \([0, -1, 0, -9844116, 12316162377]\) \(-31636584484096/1331669031\) \(-4440794062909317180144\) \([]\) \(8294400\) \(2.9203\) \(\Gamma_0(N)\)-optimal