Properties

Label 141610.ce
Number of curves $1$
Conductor $141610$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ce1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 141610.ce1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141610.ce do not have complex multiplication.

Modular form 141610.2.a.ce

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} - 2 q^{9} + q^{10} + 2 q^{11} - q^{12} - 4 q^{13} - q^{15} + q^{16} - 2 q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 141610.ce

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141610.ce1 141610l1 \([1, 1, 1, 2761100, 2451478917]\) \(341425679/578000\) \(-3940957640220155618000\) \([]\) \(8128512\) \(2.8288\) \(\Gamma_0(N)\)-optimal