Properties

Label 141570du
Number of curves $4$
Conductor $141570$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("du1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141570du have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141570du do not have complex multiplication.

Modular form 141570.2.a.du

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - 2 q^{7} - q^{8} + q^{10} - q^{13} + 2 q^{14} + q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 141570du

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141570.g4 141570du1 \([1, -1, 0, -650700, -2324744064]\) \(-23592983745241/1794399750000\) \(-2317409800706607750000\) \([2]\) \(6635520\) \(2.7792\) \(\Gamma_0(N)\)-optimal
141570.g3 141570du2 \([1, -1, 0, -30598200, -64693407564]\) \(2453170411237305241/19353090685500\) \(24993896721475502749500\) \([2]\) \(13271040\) \(3.1258\)  
141570.g2 141570du3 \([1, -1, 0, -154608075, -739915415739]\) \(-316472948332146183241/7074906009600\) \(-9137014495084006502400\) \([2]\) \(19906560\) \(3.3286\)  
141570.g1 141570du4 \([1, -1, 0, -2473742475, -47355908336379]\) \(1296294060988412126189641/647824320\) \(836644358819206080\) \([2]\) \(39813120\) \(3.6751\)