Properties

Label 141570.cn
Number of curves $1$
Conductor $141570$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 141570.cn1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 5 T + 7 T^{2}\) 1.7.af
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141570.cn do not have complex multiplication.

Modular form 141570.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} + 5 q^{7} - q^{8} - q^{10} - q^{13} - 5 q^{14} + q^{16} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 141570.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141570.cn1 141570eu1 \([1, -1, 0, -159924, -24704432]\) \(-9456845543523/57200000\) \(-2735998808400000\) \([]\) \(1344000\) \(1.8015\) \(\Gamma_0(N)\)-optimal