Properties

Label 141570.df
Number of curves $4$
Conductor $141570$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("df1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141570.df have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141570.df do not have complex multiplication.

Modular form 141570.2.a.df

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} - q^{13} + q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 141570.df

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141570.df1 141570br3 \([1, -1, 1, -16079331863, 784787968394191]\) \(355995140004443961140387841/2768480\) \(3575403242817120\) \([2]\) \(103219200\) \(4.0065\)  
141570.df2 141570br4 \([1, -1, 1, -1007223383, 12204446677327]\) \(87501897507774086005761/815991377947460000\) \(1053826727599317554908740000\) \([2]\) \(103219200\) \(4.0065\)  
141570.df3 141570br2 \([1, -1, 1, -1004958263, 12262499890831]\) \(86912881496074271306241/7664481510400\) \(9898432369674340377600\) \([2, 2]\) \(51609600\) \(3.6599\)  
141570.df4 141570br1 \([1, -1, 1, -62668343, 192519847567]\) \(-21075830718885163521/199306463150080\) \(-257397913173007159787520\) \([2]\) \(25804800\) \(3.3133\) \(\Gamma_0(N)\)-optimal