Properties

Label 14079.e
Number of curves $4$
Conductor $14079$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14079.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 14079.e do not have complex multiplication.

Modular form 14079.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} - 4 q^{7} + 3 q^{8} + q^{9} - 2 q^{10} + 4 q^{11} - q^{12} - q^{13} + 4 q^{14} + 2 q^{15} - q^{16} + 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 14079.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14079.e1 14079d4 \([1, 0, 0, -25097, 1528188]\) \(37159393753/1053\) \(49539312693\) \([2]\) \(28800\) \(1.1539\)  
14079.e2 14079d3 \([1, 0, 0, -7047, -206778]\) \(822656953/85683\) \(4031032221723\) \([2]\) \(28800\) \(1.1539\)  
14079.e3 14079d2 \([1, 0, 0, -1632, 21735]\) \(10218313/1521\) \(71556785001\) \([2, 2]\) \(14400\) \(0.80728\)  
14079.e4 14079d1 \([1, 0, 0, 173, 1880]\) \(12167/39\) \(-1834789359\) \([2]\) \(7200\) \(0.46071\) \(\Gamma_0(N)\)-optimal