Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2-294515x+360089325\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z-294515xz^2+360089325z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-381692115x+16806052925550\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(955, 30360)$ | $6.4841322008500688768537000385$ | $\infty$ |
Integral points
\( \left(955, 30360\right) \), \( \left(955, -31315\right) \)
Invariants
| Conductor: | $N$ | = | \( 139650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-54418222038319104000$ | = | $-1 \cdot 2^{19} \cdot 3 \cdot 5^{3} \cdot 7^{9} \cdot 19^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{560087524907}{10788274176} \) | = | $-1 \cdot 2^{-19} \cdot 3^{-1} \cdot 19^{-3} \cdot 8243^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4679319791315432536463077558$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.60613988923153318116710336491$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9922797707265383$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.467630909456677$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.4841322008500688768537000385$ |
|
| Real period: | $\Omega$ | ≈ | $0.16752468191106127813929872380$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot1\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.3450087376667099518143686420 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.345008738 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.167525 \cdot 6.484132 \cdot 4}{1^2} \\ & \approx 4.345008738\end{aligned}$$
Modular invariants
Modular form 139650.2.a.bt
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4290048 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{19}$ | nonsplit multiplicative | 1 | 1 | 19 | 19 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
| $7$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
| $19$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 9577 & 2 \\ 9577 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 15959 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3991 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15959 & 2 \\ 15958 & 3 \end{array}\right),\left(\begin{array}{rr} 13681 & 2 \\ 13681 & 3 \end{array}\right),\left(\begin{array}{rr} 5321 & 2 \\ 5321 & 3 \end{array}\right),\left(\begin{array}{rr} 4201 & 2 \\ 4201 & 3 \end{array}\right),\left(\begin{array}{rr} 7981 & 2 \\ 7981 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$4392005035622400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1995 = 3 \cdot 5 \cdot 7 \cdot 19 \) |
| $3$ | nonsplit multiplicative | $4$ | \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $10$ | \( 5586 = 2 \cdot 3 \cdot 7^{2} \cdot 19 \) |
| $7$ | additive | $20$ | \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 139650ic consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 139650fp1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.15960.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.4065356736000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | add | add | ord | ord | ord | nonsplit | ord | ord | ord | ss | ord | ord | ord |
| $\lambda$-invariant(s) | 4 | 1 | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.