Properties

Label 139650fk
Number of curves $2$
Conductor $139650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 139650fk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 139650fk do not have complex multiplication.

Modular form 139650.2.a.fk

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} - 3 q^{11} + q^{12} - 6 q^{13} + q^{16} - 2 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 139650fk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
139650.cu1 139650fk1 \([1, 0, 1, -973901, 369910748]\) \(-1389310279182025/267418692\) \(-19663463559442500\) \([]\) \(2592000\) \(2.1269\) \(\Gamma_0(N)\)-optimal
139650.cu2 139650fk2 \([1, 0, 1, 5845674, -323404952]\) \(480705753733655/279172334592\) \(-12829822653286800000000\) \([]\) \(12960000\) \(2.9316\)