Properties

Label 139650et
Number of curves $1$
Conductor $139650$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("et1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 139650et1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 139650et do not have complex multiplication.

Modular form 139650.2.a.et

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + 5 q^{11} - q^{12} - q^{13} + q^{16} - 7 q^{17} + q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 139650et

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
139650.gq1 139650et1 \([1, 1, 1, 45912, 6951531]\) \(16974593/42750\) \(-26954948425781250\) \([]\) \(1677312\) \(1.8365\) \(\Gamma_0(N)\)-optimal