Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+230887x-1986145533\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+230887xz^2-1986145533z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+299229525x-92666503676250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(20659/4, 2940215/8)$ | $4.6216490264864492913699444068$ | $\infty$ |
| $(4783/4, -4783/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 139650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $-1704963151034441156250$ | = | $-1 \cdot 2 \cdot 3^{20} \cdot 5^{6} \cdot 7^{7} \cdot 19 $ |
|
| j-invariant: | $j$ | = | \( \frac{740480746823}{927484650666} \) | = | $2^{-1} \cdot 3^{-20} \cdot 7^{-1} \cdot 19^{-1} \cdot 83^{3} \cdot 109^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7529757931119689507422155024$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.97530176236726211088915946407$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0514505724300596$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.755852931040342$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.6216490264864492913699444068$ |
|
| Real period: | $\Omega$ | ≈ | $0.069524407330830190302734070090$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 160 $ = $ 1\cdot( 2^{2} \cdot 5 )\cdot2^{2}\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $12.852696378303148298520930972 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.852696378 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.069524 \cdot 4.621649 \cdot 160}{2^2} \\ & \approx 12.852696378\end{aligned}$$
Modular invariants
Modular form 139650.2.a.hg
For more coefficients, see the Downloads section to the right.
| Modular degree: | 7864320 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $3$ | $20$ | $I_{20}$ | split multiplicative | -1 | 1 | 20 | 20 |
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 15960 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 5321 & 3200 \\ 14900 & 12801 \end{array}\right),\left(\begin{array}{rr} 10776 & 9185 \\ 1225 & 7656 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 4036 & 6385 \\ 4055 & 6 \end{array}\right),\left(\begin{array}{rr} 9976 & 5195 \\ 7585 & 10806 \end{array}\right),\left(\begin{array}{rr} 15953 & 8 \\ 15952 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 15954 & 15955 \end{array}\right),\left(\begin{array}{rr} 5464 & 12765 \\ 11395 & 9574 \end{array}\right),\left(\begin{array}{rr} 6383 & 0 \\ 0 & 15959 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[15960])$ is a degree-$183000209817600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/15960\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 23275 = 5^{2} \cdot 7^{2} \cdot 19 \) |
| $3$ | split multiplicative | $4$ | \( 46550 = 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
| $5$ | additive | $14$ | \( 1862 = 2 \cdot 7^{2} \cdot 19 \) |
| $7$ | additive | $32$ | \( 2850 = 2 \cdot 3 \cdot 5^{2} \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 139650bh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 798d4, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-266}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-665}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{10}, \sqrt{-266})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | split | add | add | ord | ord | ord | split | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 10 | 4 | - | - | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 2 | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.