Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-10842x-928684\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-10842xz^2-928684z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-173475x-59609250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 13950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 31$ |
|
| Discriminant: | $\Delta$ | = | $-293188126500000$ | = | $-1 \cdot 2^{5} \cdot 3^{9} \cdot 5^{6} \cdot 31^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{458314011}{953312} \) | = | $-1 \cdot 2^{-5} \cdot 3^{3} \cdot 31^{-3} \cdot 257^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4651055067563292425560441310$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.16357266596180321329076946331$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9685438880978434$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.297496910413931$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.21948156824790061962170443161$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot2\cdot1\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.3168894094874037177302265897 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.316889409 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.219482 \cdot 1.000000 \cdot 6}{1^2} \\ & \approx 1.316889409\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 77760 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $31$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 1861 & 750 \\ 375 & 2251 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 3715 & 6 \\ 3714 & 7 \end{array}\right),\left(\begin{array}{rr} 2634 & 335 \\ 245 & 1314 \end{array}\right),\left(\begin{array}{rr} 2791 & 750 \\ 3165 & 2251 \end{array}\right),\left(\begin{array}{rr} 1801 & 750 \\ 195 & 2251 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 743 & 0 \\ 0 & 3719 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3720])$ is a degree-$1974730752000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3720\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 2325 = 3 \cdot 5^{2} \cdot 31 \) |
| $3$ | additive | $2$ | \( 50 = 2 \cdot 5^{2} \) |
| $5$ | additive | $14$ | \( 279 = 3^{2} \cdot 31 \) |
| $31$ | split multiplicative | $32$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 13950.bl
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 558.d1, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.744.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.411830784.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.1458000.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.207576000.2 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | 12.0.19131876000000.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.243259173394570880630132847493333500000000.3 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.405606759234388633976832000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | add | ord | ord | ord | ord | ord | ord | ord | split | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.