Learn more

Refine search


Results (38 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
558.d1 558.d \( 2 \cdot 3^{2} \cdot 31 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -48, 288]$ \(y^2+xy=x^3-x^2-48x+288\) 3.8.0-3.a.1.2, 744.16.0.? $[ ]$
558.e1 558.e \( 2 \cdot 3^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.161820719$ $[1, -1, 1, -434, -7343]$ \(y^2+xy+y=x^3-x^2-434x-7343\) 3.8.0-3.a.1.1, 744.16.0.? $[(91, 791)]$
4464.d1 4464.d \( 2^{4} \cdot 3^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -6939, 476874]$ \(y^2=x^3-6939x+476874\) 3.4.0.a.1, 12.8.0-3.a.1.2, 744.16.0.? $[ ]$
4464.y1 4464.y \( 2^{4} \cdot 3^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -771, -17662]$ \(y^2=x^3-771x-17662\) 3.4.0.a.1, 12.8.0-3.a.1.1, 744.16.0.? $[ ]$
13950.bl1 13950.bl \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -10842, -928684]$ \(y^2+xy=x^3-x^2-10842x-928684\) 3.4.0.a.1, 15.8.0-3.a.1.1, 744.8.0.?, 3720.16.0.? $[ ]$
13950.da1 13950.da \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.319227032$ $[1, -1, 1, -1205, 34797]$ \(y^2+xy+y=x^3-x^2-1205x+34797\) 3.4.0.a.1, 15.8.0-3.a.1.2, 744.8.0.?, 3720.16.0.? $[(35, 168)]$
17298.j1 17298.j \( 2 \cdot 3^{2} \cdot 31^{2} \) $2$ $\mathsf{trivial}$ $4.601866828$ $[1, -1, 0, -46308, -8209808]$ \(y^2+xy=x^3-x^2-46308x-8209808\) 3.4.0.a.1, 24.8.0-3.a.1.7, 93.8.0.?, 744.16.0.? $[(287, 1298), (9587, 933623)]$
17298.k1 17298.k \( 2 \cdot 3^{2} \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $0.636428709$ $[1, -1, 1, -416774, 222081589]$ \(y^2+xy+y=x^3-x^2-416774x+222081589\) 3.4.0.a.1, 24.8.0-3.a.1.8, 93.8.0.?, 744.16.0.? $[(1031, 29275)]$
17856.b1 17856.b \( 2^{6} \cdot 3^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $0.350588603$ $[0, 0, 0, -3084, 141296]$ \(y^2=x^3-3084x+141296\) 3.4.0.a.1, 24.8.0-3.a.1.2, 372.8.0.?, 744.16.0.? $[(254, 3968), (-2, 384)]$
17856.m1 17856.m \( 2^{6} \cdot 3^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3084, -141296]$ \(y^2=x^3-3084x-141296\) 3.4.0.a.1, 24.8.0-3.a.1.4, 186.8.0.?, 744.16.0.? $[ ]$
17856.cd1 17856.cd \( 2^{6} \cdot 3^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -27756, -3814992]$ \(y^2=x^3-27756x-3814992\) 3.4.0.a.1, 24.8.0-3.a.1.1, 372.8.0.?, 744.16.0.? $[ ]$
17856.ci1 17856.ci \( 2^{6} \cdot 3^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -27756, 3814992]$ \(y^2=x^3-27756x+3814992\) 3.4.0.a.1, 24.8.0-3.a.1.3, 186.8.0.?, 744.16.0.? $[ ]$
27342.d1 27342.d \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2361, -94067]$ \(y^2+xy=x^3-x^2-2361x-94067\) 3.4.0.a.1, 21.8.0-3.a.1.1, 744.8.0.?, 5208.16.0.? $[ ]$
27342.bs1 27342.bs \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $1.202248741$ $[1, -1, 1, -21251, 2561059]$ \(y^2+xy+y=x^3-x^2-21251x+2561059\) 3.4.0.a.1, 21.8.0-3.a.1.2, 744.8.0.?, 5208.16.0.? $[(121, 1262)]$
67518.d1 67518.d \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $2.051200814$ $[1, -1, 0, -52476, 9930608]$ \(y^2+xy=x^3-x^2-52476x+9930608\) 3.4.0.a.1, 33.8.0-3.a.1.1, 744.8.0.?, 8184.16.0.? $[(-161, 3847)]$
67518.cc1 67518.cc \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -5831, -365857]$ \(y^2+xy+y=x^3-x^2-5831x-365857\) 3.4.0.a.1, 33.8.0-3.a.1.2, 744.8.0.?, 8184.16.0.? $[ ]$
94302.be1 94302.be \( 2 \cdot 3^{2} \cdot 13^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $29.98105955$ $[1, -1, 0, -73293, -16351867]$ \(y^2+xy=x^3-x^2-73293x-16351867\) 3.4.0.a.1, 39.8.0-3.a.1.2, 744.8.0.?, 9672.16.0.? $[(54226809277969/37847, 398279625605368062152/37847)]$
94302.bn1 94302.bn \( 2 \cdot 3^{2} \cdot 13^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -8144, 608339]$ \(y^2+xy+y=x^3-x^2-8144x+608339\) 3.4.0.a.1, 39.8.0-3.a.1.1, 744.8.0.?, 9672.16.0.? $[ ]$
111600.j1 111600.j \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -19275, -2207750]$ \(y^2=x^3-19275x-2207750\) 3.4.0.a.1, 60.8.0-3.a.1.2, 744.8.0.?, 3720.16.0.? $[ ]$
111600.s1 111600.s \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -173475, 59609250]$ \(y^2=x^3-173475x+59609250\) 3.4.0.a.1, 60.8.0-3.a.1.1, 744.8.0.?, 3720.16.0.? $[ ]$
138384.l1 138384.l \( 2^{4} \cdot 3^{2} \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $17.43385504$ $[0, 0, 0, -6668379, -14206553334]$ \(y^2=x^3-6668379x-14206553334\) 3.4.0.a.1, 24.8.0-3.a.1.6, 372.8.0.?, 744.16.0.? $[(250571919/275, 178446026322/275)]$
138384.da1 138384.da \( 2^{4} \cdot 3^{2} \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $4.369948812$ $[0, 0, 0, -740931, 526168642]$ \(y^2=x^3-740931x+526168642\) 3.4.0.a.1, 24.8.0-3.a.1.5, 372.8.0.?, 744.16.0.? $[(-127, 24864)]$
161262.b1 161262.b \( 2 \cdot 3^{2} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $4.715510339$ $[1, -1, 0, -13926, 1359316]$ \(y^2+xy=x^3-x^2-13926x+1359316\) 3.4.0.a.1, 51.8.0-3.a.1.2, 744.8.0.?, 12648.16.0.? $[(131, 1265)]$
161262.ba1 161262.ba \( 2 \cdot 3^{2} \cdot 17^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -125336, -36576197]$ \(y^2+xy+y=x^3-x^2-125336x-36576197\) 3.4.0.a.1, 51.8.0-3.a.1.1, 744.8.0.?, 12648.16.0.? $[ ]$
201438.b1 201438.b \( 2 \cdot 3^{2} \cdot 19^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -156561, 51146621]$ \(y^2+xy=x^3-x^2-156561x+51146621\) 3.4.0.a.1, 57.8.0-3.a.1.2, 744.8.0.?, 14136.16.0.? $[ ]$
201438.bc1 201438.bc \( 2 \cdot 3^{2} \cdot 19^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $6.979374006$ $[1, -1, 1, -17396, -1888521]$ \(y^2+xy+y=x^3-x^2-17396x-1888521\) 3.4.0.a.1, 57.8.0-3.a.1.1, 744.8.0.?, 14136.16.0.? $[(1499/2, 51633/2)]$
218736.n1 218736.n \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $0.554592716$ $[0, 0, 0, -37779, 6058066]$ \(y^2=x^3-37779x+6058066\) 3.4.0.a.1, 84.8.0.?, 744.8.0.?, 5208.16.0.? $[(-103, 2976), (455, 9114)]$
218736.fc1 218736.fc \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -340011, -163567782]$ \(y^2=x^3-340011x-163567782\) 3.4.0.a.1, 84.8.0.?, 744.8.0.?, 5208.16.0.? $[ ]$
295182.b1 295182.b \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $2.448800293$ $[1, -1, 0, -25491, -3351339]$ \(y^2+xy=x^3-x^2-25491x-3351339\) 3.4.0.a.1, 69.8.0-3.a.1.2, 744.8.0.?, 17112.16.0.? $[(351, 5379)]$
295182.cj1 295182.cj \( 2 \cdot 3^{2} \cdot 23^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -229421, 90715573]$ \(y^2+xy+y=x^3-x^2-229421x+90715573\) 3.4.0.a.1, 69.8.0-3.a.1.1, 744.8.0.?, 17112.16.0.? $[ ]$
432450.dx1 432450.dx \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -10419342, 27749779316]$ \(y^2+xy=x^3-x^2-10419342x+27749779316\) 3.4.0.a.1, 120.8.0.?, 465.8.0.?, 744.8.0.?, 3720.16.0.? $[ ]$
432450.id1 432450.id \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $6.491590372$ $[1, -1, 1, -1157705, -1027383703]$ \(y^2+xy+y=x^3-x^2-1157705x-1027383703\) 3.4.0.a.1, 120.8.0.?, 465.8.0.?, 744.8.0.?, 3720.16.0.? $[(461197/3, 312441392/3)]$
446400.bi1 446400.bi \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -693900, 476874000]$ \(y^2=x^3-693900x+476874000\) 3.4.0.a.1, 120.8.0.?, 744.8.0.?, 930.8.0.?, 3720.16.0.? $[ ]$
446400.cj1 446400.cj \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -77100, -17662000]$ \(y^2=x^3-77100x-17662000\) 3.4.0.a.1, 120.8.0.?, 744.8.0.?, 930.8.0.?, 3720.16.0.? $[ ]$
446400.rq1 446400.rq \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -77100, 17662000]$ \(y^2=x^3-77100x+17662000\) 3.4.0.a.1, 120.8.0.?, 744.8.0.?, 1860.8.0.?, 3720.16.0.? $[ ]$
446400.sp1 446400.sp \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -693900, -476874000]$ \(y^2=x^3-693900x-476874000\) 3.4.0.a.1, 120.8.0.?, 744.8.0.?, 1860.8.0.?, 3720.16.0.? $[ ]$
469278.a1 469278.a \( 2 \cdot 3^{2} \cdot 29^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $9.447535800$ $[1, -1, 0, -364731, -181635067]$ \(y^2+xy=x^3-x^2-364731x-181635067\) 3.4.0.a.1, 87.8.0.?, 744.8.0.?, 21576.16.0.? $[(1397461/35, 1251689186/35)]$
469278.bz1 469278.bz \( 2 \cdot 3^{2} \cdot 29^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -40526, 6740733]$ \(y^2+xy+y=x^3-x^2-40526x+6740733\) 3.4.0.a.1, 87.8.0.?, 744.8.0.?, 21576.16.0.? $[ ]$
  displayed columns for results