| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 558.d1 |
558b1 |
558.d |
558b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 31^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$240$ |
$0.111080$ |
$-458314011/953312$ |
$0.96854$ |
$3.91561$ |
$[1, -1, 0, -48, 288]$ |
\(y^2+xy=x^3-x^2-48x+288\) |
3.8.0-3.a.1.2, 744.16.0.? |
$[ ]$ |
| 558.e1 |
558f2 |
558.e |
558f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$744$ |
$16$ |
$0$ |
$0.161820719$ |
$1$ |
|
$8$ |
$720$ |
$0.660386$ |
$-458314011/953312$ |
$0.96854$ |
$4.95788$ |
$[1, -1, 1, -434, -7343]$ |
\(y^2+xy+y=x^3-x^2-434x-7343\) |
3.8.0-3.a.1.1, 744.16.0.? |
$[(91, 791)]$ |
| 4464.d1 |
4464n2 |
4464.d |
4464n |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 31 \) |
\( - 2^{17} \cdot 3^{9} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$1.353533$ |
$-458314011/953312$ |
$0.96854$ |
$4.72086$ |
$[0, 0, 0, -6939, 476874]$ |
\(y^2=x^3-6939x+476874\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 744.16.0.? |
$[ ]$ |
| 4464.y1 |
4464m1 |
4464.y |
4464m |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 31 \) |
\( - 2^{17} \cdot 3^{3} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.804228$ |
$-458314011/953312$ |
$0.96854$ |
$3.93649$ |
$[0, 0, 0, -771, -17662]$ |
\(y^2=x^3-771x-17662\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 744.16.0.? |
$[ ]$ |
| 13950.bl1 |
13950i2 |
13950.bl |
13950i |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$77760$ |
$1.465105$ |
$-458314011/953312$ |
$0.96854$ |
$4.29750$ |
$[1, -1, 0, -10842, -928684]$ |
\(y^2+xy=x^3-x^2-10842x-928684\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 744.8.0.?, 3720.16.0.? |
$[ ]$ |
| 13950.da1 |
13950by1 |
13950.da |
13950by |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 5^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$0.319227032$ |
$1$ |
|
$6$ |
$25920$ |
$0.915799$ |
$-458314011/953312$ |
$0.96854$ |
$3.60678$ |
$[1, -1, 1, -1205, 34797]$ |
\(y^2+xy+y=x^3-x^2-1205x+34797\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 744.8.0.?, 3720.16.0.? |
$[(35, 168)]$ |
| 17298.j1 |
17298d1 |
17298.j |
17298d |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 31^{2} \) |
\( - 2^{5} \cdot 3^{3} \cdot 31^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$4.601866828$ |
$1$ |
|
$6$ |
$230400$ |
$1.828074$ |
$-458314011/953312$ |
$0.96854$ |
$4.64911$ |
$[1, -1, 0, -46308, -8209808]$ |
\(y^2+xy=x^3-x^2-46308x-8209808\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 93.8.0.?, 744.16.0.? |
$[(287, 1298), (9587, 933623)]$ |
| 17298.k1 |
17298n2 |
17298.k |
17298n |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 31^{2} \) |
\( - 2^{5} \cdot 3^{9} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$0.636428709$ |
$1$ |
|
$4$ |
$691200$ |
$2.377380$ |
$-458314011/953312$ |
$0.96854$ |
$5.32460$ |
$[1, -1, 1, -416774, 222081589]$ |
\(y^2+xy+y=x^3-x^2-416774x+222081589\) |
3.4.0.a.1, 24.8.0-3.a.1.8, 93.8.0.?, 744.16.0.? |
$[(1031, 29275)]$ |
| 17856.b1 |
17856j1 |
17856.b |
17856j |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{3} \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$0.350588603$ |
$1$ |
|
$18$ |
$46080$ |
$1.150801$ |
$-458314011/953312$ |
$0.96854$ |
$3.80388$ |
$[0, 0, 0, -3084, 141296]$ |
\(y^2=x^3-3084x+141296\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 372.8.0.?, 744.16.0.? |
$[(254, 3968), (-2, 384)]$ |
| 17856.m1 |
17856bn1 |
17856.m |
17856bn |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{3} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46080$ |
$1.150801$ |
$-458314011/953312$ |
$0.96854$ |
$3.80388$ |
$[0, 0, 0, -3084, -141296]$ |
\(y^2=x^3-3084x-141296\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 186.8.0.?, 744.16.0.? |
$[ ]$ |
| 17856.cd1 |
17856i2 |
17856.cd |
17856i |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{9} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$1.700108$ |
$-458314011/953312$ |
$0.96854$ |
$4.47718$ |
$[0, 0, 0, -27756, -3814992]$ |
\(y^2=x^3-27756x-3814992\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 372.8.0.?, 744.16.0.? |
$[ ]$ |
| 17856.ci1 |
17856bm2 |
17856.ci |
17856bm |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{9} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$1.700108$ |
$-458314011/953312$ |
$0.96854$ |
$4.47718$ |
$[0, 0, 0, -27756, 3814992]$ |
\(y^2=x^3-27756x+3814992\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 186.8.0.?, 744.16.0.? |
$[ ]$ |
| 27342.d1 |
27342a1 |
27342.d |
27342a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 7^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5208$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.084036$ |
$-458314011/953312$ |
$0.96854$ |
$3.56681$ |
$[1, -1, 0, -2361, -94067]$ |
\(y^2+xy=x^3-x^2-2361x-94067\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 744.8.0.?, 5208.16.0.? |
$[ ]$ |
| 27342.bs1 |
27342w2 |
27342.bs |
27342w |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 7^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5208$ |
$16$ |
$0$ |
$1.202248741$ |
$1$ |
|
$4$ |
$207360$ |
$1.633341$ |
$-458314011/953312$ |
$0.96854$ |
$4.21203$ |
$[1, -1, 1, -21251, 2561059]$ |
\(y^2+xy+y=x^3-x^2-21251x+2561059\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 744.8.0.?, 5208.16.0.? |
$[(121, 1262)]$ |
| 67518.d1 |
67518f2 |
67518.d |
67518f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 11^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8184$ |
$16$ |
$0$ |
$2.051200814$ |
$1$ |
|
$2$ |
$972000$ |
$1.859335$ |
$-458314011/953312$ |
$0.96854$ |
$4.11350$ |
$[1, -1, 0, -52476, 9930608]$ |
\(y^2+xy=x^3-x^2-52476x+9930608\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 744.8.0.?, 8184.16.0.? |
$[(-161, 3847)]$ |
| 67518.cc1 |
67518bg1 |
67518.cc |
67518bg |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 11^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8184$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$324000$ |
$1.310028$ |
$-458314011/953312$ |
$0.96854$ |
$3.52073$ |
$[1, -1, 1, -5831, -365857]$ |
\(y^2+xy+y=x^3-x^2-5831x-365857\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 744.8.0.?, 8184.16.0.? |
$[ ]$ |
| 94302.be1 |
94302d2 |
94302.be |
94302d |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 13^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9672$ |
$16$ |
$0$ |
$29.98105955$ |
$1$ |
|
$0$ |
$1477440$ |
$1.942862$ |
$-458314011/953312$ |
$0.96854$ |
$4.08102$ |
$[1, -1, 0, -73293, -16351867]$ |
\(y^2+xy=x^3-x^2-73293x-16351867\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 744.8.0.?, 9672.16.0.? |
$[(54226809277969/37847, 398279625605368062152/37847)]$ |
| 94302.bn1 |
94302bl1 |
94302.bn |
94302bl |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 13^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9672$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$492480$ |
$1.393555$ |
$-458314011/953312$ |
$0.96854$ |
$3.50555$ |
$[1, -1, 1, -8144, 608339]$ |
\(y^2+xy+y=x^3-x^2-8144x+608339\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 744.8.0.?, 9672.16.0.? |
$[ ]$ |
| 111600.j1 |
111600cm1 |
111600.j |
111600cm |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{17} \cdot 3^{3} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$622080$ |
$1.608946$ |
$-458314011/953312$ |
$0.96854$ |
$3.67713$ |
$[0, 0, 0, -19275, -2207750]$ |
\(y^2=x^3-19275x-2207750\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 744.8.0.?, 3720.16.0.? |
$[ ]$ |
| 111600.s1 |
111600cl2 |
111600.s |
111600cl |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{17} \cdot 3^{9} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1866240$ |
$2.158253$ |
$-458314011/953312$ |
$0.96854$ |
$4.24427$ |
$[0, 0, 0, -173475, 59609250]$ |
\(y^2=x^3-173475x+59609250\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 744.8.0.?, 3720.16.0.? |
$[ ]$ |
| 138384.l1 |
138384y2 |
138384.l |
138384y |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 31^{2} \) |
\( - 2^{17} \cdot 3^{9} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$17.43385504$ |
$1$ |
|
$0$ |
$16588800$ |
$3.070526$ |
$-458314011/953312$ |
$0.96854$ |
$5.09192$ |
$[0, 0, 0, -6668379, -14206553334]$ |
\(y^2=x^3-6668379x-14206553334\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 372.8.0.?, 744.16.0.? |
$[(250571919/275, 178446026322/275)]$ |
| 138384.da1 |
138384bo1 |
138384.da |
138384bo |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 31^{2} \) |
\( - 2^{17} \cdot 3^{3} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$4.369948812$ |
$1$ |
|
$2$ |
$5529600$ |
$2.521221$ |
$-458314011/953312$ |
$0.96854$ |
$4.53509$ |
$[0, 0, 0, -740931, 526168642]$ |
\(y^2=x^3-740931x+526168642\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 372.8.0.?, 744.16.0.? |
$[(-127, 24864)]$ |
| 161262.b1 |
161262z1 |
161262.b |
161262z |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 17^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12648$ |
$16$ |
$0$ |
$4.715510339$ |
$1$ |
|
$2$ |
$1209600$ |
$1.527687$ |
$-458314011/953312$ |
$0.96854$ |
$3.48292$ |
$[1, -1, 0, -13926, 1359316]$ |
\(y^2+xy=x^3-x^2-13926x+1359316\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 744.8.0.?, 12648.16.0.? |
$[(131, 1265)]$ |
| 161262.ba1 |
161262j2 |
161262.ba |
161262j |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 17^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$12648$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$3628800$ |
$2.076992$ |
$-458314011/953312$ |
$0.96854$ |
$4.03265$ |
$[1, -1, 1, -125336, -36576197]$ |
\(y^2+xy+y=x^3-x^2-125336x-36576197\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 744.8.0.?, 12648.16.0.? |
$[ ]$ |
| 201438.b1 |
201438ba2 |
201438.b |
201438ba |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 19^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14136$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4548960$ |
$2.132607$ |
$-458314011/953312$ |
$0.96854$ |
$4.01384$ |
$[1, -1, 0, -156561, 51146621]$ |
\(y^2+xy=x^3-x^2-156561x+51146621\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 744.8.0.?, 14136.16.0.? |
$[ ]$ |
| 201438.bc1 |
201438o1 |
201438.bc |
201438o |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 19^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14136$ |
$16$ |
$0$ |
$6.979374006$ |
$1$ |
|
$0$ |
$1516320$ |
$1.583300$ |
$-458314011/953312$ |
$0.96854$ |
$3.47413$ |
$[1, -1, 1, -17396, -1888521]$ |
\(y^2+xy+y=x^3-x^2-17396x-1888521\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 744.8.0.?, 14136.16.0.? |
$[(1499/2, 51633/2)]$ |
| 218736.n1 |
218736cs1 |
218736.n |
218736cs |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{17} \cdot 3^{3} \cdot 7^{6} \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5208$ |
$16$ |
$0$ |
$0.554592716$ |
$1$ |
|
$18$ |
$1658880$ |
$1.777184$ |
$-458314011/953312$ |
$0.96854$ |
$3.64007$ |
$[0, 0, 0, -37779, 6058066]$ |
\(y^2=x^3-37779x+6058066\) |
3.4.0.a.1, 84.8.0.?, 744.8.0.?, 5208.16.0.? |
$[(-103, 2976), (455, 9114)]$ |
| 218736.fc1 |
218736dl2 |
218736.fc |
218736dl |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{17} \cdot 3^{9} \cdot 7^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5208$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.326488$ |
$-458314011/953312$ |
$0.96854$ |
$4.17617$ |
$[0, 0, 0, -340011, -163567782]$ |
\(y^2=x^3-340011x-163567782\) |
3.4.0.a.1, 84.8.0.?, 744.8.0.?, 5208.16.0.? |
$[ ]$ |
| 295182.b1 |
295182b1 |
295182.b |
295182b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 23^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 23^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17112$ |
$16$ |
$0$ |
$2.448800293$ |
$1$ |
|
$2$ |
$2851200$ |
$1.678827$ |
$-458314011/953312$ |
$0.96854$ |
$3.45974$ |
$[1, -1, 0, -25491, -3351339]$ |
\(y^2+xy=x^3-x^2-25491x-3351339\) |
3.4.0.a.1, 69.8.0-3.a.1.2, 744.8.0.?, 17112.16.0.? |
$[(351, 5379)]$ |
| 295182.cj1 |
295182cj2 |
295182.cj |
295182cj |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 23^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 23^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17112$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8553600$ |
$2.228134$ |
$-458314011/953312$ |
$0.96854$ |
$3.98309$ |
$[1, -1, 1, -229421, 90715573]$ |
\(y^2+xy+y=x^3-x^2-229421x+90715573\) |
3.4.0.a.1, 69.8.0-3.a.1.1, 744.8.0.?, 17112.16.0.? |
$[ ]$ |
| 432450.dx1 |
432450dx2 |
432450.dx |
432450dx |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{5} \cdot 3^{9} \cdot 5^{6} \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$74649600$ |
$3.182098$ |
$-458314011/953312$ |
$0.96854$ |
$4.74801$ |
$[1, -1, 0, -10419342, 27749779316]$ |
\(y^2+xy=x^3-x^2-10419342x+27749779316\) |
3.4.0.a.1, 120.8.0.?, 465.8.0.?, 744.8.0.?, 3720.16.0.? |
$[ ]$ |
| 432450.id1 |
432450id1 |
432450.id |
432450id |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{5} \cdot 3^{3} \cdot 5^{6} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$6.491590372$ |
$1$ |
|
$0$ |
$24883200$ |
$2.632793$ |
$-458314011/953312$ |
$0.96854$ |
$4.24007$ |
$[1, -1, 1, -1157705, -1027383703]$ |
\(y^2+xy+y=x^3-x^2-1157705x-1027383703\) |
3.4.0.a.1, 120.8.0.?, 465.8.0.?, 744.8.0.?, 3720.16.0.? |
$[(461197/3, 312441392/3)]$ |
| 446400.bi1 |
446400bi2 |
446400.bi |
446400bi |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14929920$ |
$2.504826$ |
$-458314011/953312$ |
$0.96854$ |
$4.11168$ |
$[0, 0, 0, -693900, 476874000]$ |
\(y^2=x^3-693900x+476874000\) |
3.4.0.a.1, 120.8.0.?, 744.8.0.?, 930.8.0.?, 3720.16.0.? |
$[ ]$ |
| 446400.cj1 |
446400cj1 |
446400.cj |
446400cj |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{3} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$1.955521$ |
$-458314011/953312$ |
$0.96854$ |
$3.60497$ |
$[0, 0, 0, -77100, -17662000]$ |
\(y^2=x^3-77100x-17662000\) |
3.4.0.a.1, 120.8.0.?, 744.8.0.?, 930.8.0.?, 3720.16.0.? |
$[ ]$ |
| 446400.rq1 |
446400rq1 |
446400.rq |
446400rq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{3} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$1.955521$ |
$-458314011/953312$ |
$0.96854$ |
$3.60497$ |
$[0, 0, 0, -77100, 17662000]$ |
\(y^2=x^3-77100x+17662000\) |
3.4.0.a.1, 120.8.0.?, 744.8.0.?, 1860.8.0.?, 3720.16.0.? |
$[ ]$ |
| 446400.sp1 |
446400sp2 |
446400.sp |
446400sp |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{9} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$14929920$ |
$2.504826$ |
$-458314011/953312$ |
$0.96854$ |
$4.11168$ |
$[0, 0, 0, -693900, -476874000]$ |
\(y^2=x^3-693900x-476874000\) |
3.4.0.a.1, 120.8.0.?, 744.8.0.?, 1860.8.0.?, 3720.16.0.? |
$[ ]$ |
| 469278.a1 |
469278a2 |
469278.a |
469278a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 29^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{9} \cdot 29^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$21576$ |
$16$ |
$0$ |
$9.447535800$ |
$1$ |
|
$0$ |
$17418240$ |
$2.344036$ |
$-458314011/953312$ |
$0.96854$ |
$3.94819$ |
$[1, -1, 0, -364731, -181635067]$ |
\(y^2+xy=x^3-x^2-364731x-181635067\) |
3.4.0.a.1, 87.8.0.?, 744.8.0.?, 21576.16.0.? |
$[(1397461/35, 1251689186/35)]$ |
| 469278.bz1 |
469278bz1 |
469278.bz |
469278bz |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 29^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 29^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$21576$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5806080$ |
$1.794729$ |
$-458314011/953312$ |
$0.96854$ |
$3.44342$ |
$[1, -1, 1, -40526, 6740733]$ |
\(y^2+xy+y=x^3-x^2-40526x+6740733\) |
3.4.0.a.1, 87.8.0.?, 744.8.0.?, 21576.16.0.? |
$[ ]$ |