Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-12713113x-16900020844\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-12713113xz^2-16900020844z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-16476194475x-788240229572250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-9405/4, 9401/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 139425 \) | = | $3 \cdot 5^{2} \cdot 11 \cdot 13^{2}$ |
|
| Discriminant: | $\Delta$ | = | $8196521463322650046875$ | = | $3 \cdot 5^{6} \cdot 11^{8} \cdot 13^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{3013001140430737}{108679952667} \) | = | $3^{-1} \cdot 11^{-8} \cdot 13^{-2} \cdot 97^{3} \cdot 1489^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9748628641347060314054970633$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.88766922918688747607837367591$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9785267024283243$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.123393105723673$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.080130659093327416922150506423$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 1\cdot2\cdot2^{3}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2820905454932386707544081028 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.282090545 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.080131 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 1.282090545\end{aligned}$$
Modular invariants
Modular form 139425.2.a.f
For more coefficients, see the Downloads section to the right.
| Modular degree: | 11010048 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $11$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.5 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 34320 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 13741 & 6880 \\ 1460 & 1401 \end{array}\right),\left(\begin{array}{rr} 20579 & 27440 \\ 30880 & 7179 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11456 & 5 \\ 34275 & 34306 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 34316 & 34317 \end{array}\right),\left(\begin{array}{rr} 24961 & 6880 \\ 14360 & 20721 \end{array}\right),\left(\begin{array}{rr} 34305 & 16 \\ 34304 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 26606 & 15445 \\ 14665 & 10306 \end{array}\right),\left(\begin{array}{rr} 6863 & 0 \\ 0 & 34319 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 34222 & 34307 \end{array}\right)$.
The torsion field $K:=\Q(E[34320])$ is a degree-$1020235087872000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/34320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 12675 = 3 \cdot 5^{2} \cdot 13^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 46475 = 5^{2} \cdot 11 \cdot 13^{2} \) |
| $5$ | additive | $14$ | \( 5577 = 3 \cdot 11 \cdot 13^{2} \) |
| $11$ | split multiplicative | $12$ | \( 12675 = 3 \cdot 5^{2} \cdot 13^{2} \) |
| $13$ | additive | $98$ | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 139425n
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 429b5, its twist by $65$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-195}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-65}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{3}, \sqrt{-65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-10}, \sqrt{26})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-30}, \sqrt{-65})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.4.852826890240000.63 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.3331355040000.72 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.94758543360000.82 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 11 | 13 |
|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | add | split | add |
| $\lambda$-invariant(s) | 4 | 0 | - | 1 | - |
| $\mu$-invariant(s) | 2 | 0 | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.