Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 0, -3009, -61770]) # or

sage: E = EllipticCurve("429b5")

gp: E = ellinit([1, 0, 0, -3009, -61770]) \\ or

gp: E = ellinit("429b5")

magma: E := EllipticCurve([1, 0, 0, -3009, -61770]); // or

magma: E := EllipticCurve("429b5");

$$y^2 + x y = x^{3} - 3009 x - 61770$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(-34, 56\right)$$ $$\hat{h}(P)$$ ≈ $2.115453196439504$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-\frac{145}{4}, \frac{145}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-34, 56\right)$$, $$\left(-34, -22\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$429$$ = $$3 \cdot 11 \cdot 13$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$108679952667$$ = $$3 \cdot 11^{8} \cdot 13^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{3013001140430737}{108679952667}$$ = $$3^{-1} \cdot 11^{-8} \cdot 13^{-2} \cdot 97^{3} \cdot 1489^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.11545319644$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.646034027151$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$4$$  = $$1\cdot2\cdot2$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q - q^{2} + q^{3} - q^{4} - 2q^{5} - q^{6} + 3q^{8} + q^{9} + 2q^{10} - q^{11} - q^{12} + q^{13} - 2q^{15} - q^{16} - 6q^{17} - q^{18} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 512 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$1.36665474775$$

## Local data

This elliptic curve is semistable.

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$11$$ $$2$$ $$I_{8}$$ Non-split multiplicative 1 1 8 8
$$13$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X36l.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary split ordinary ss nonsplit split ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary 1 2 1 1,1 1 2 1 1 1 1 1,1 1 1 1 1 2 0 0 0,0 0 0 0 0 0 0 0,0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 429b consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{-3})$$ $$\Z/4\Z$$ 2.0.3.1-61347.2-b6
$2$ $$\Q(\sqrt{-1})$$ $$\Z/4\Z$$ Not in database
$2$ $$\Q(\sqrt{3})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$4$ $$\Q(\zeta_{12})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ 4.0.432.1 $$\Z/8\Z$$ Not in database
$4$ $$\Q(i, \sqrt{26})$$ $$\Z/8\Z$$ Not in database
$4$ $$\Q(i, \sqrt{78})$$ $$\Z/8\Z$$ Not in database
$4$ 4.2.1168128.1 $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.