Properties

Label 13650.cx
Number of curves $4$
Conductor $13650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13650.cx have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13650.cx do not have complex multiplication.

Modular form 13650.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} + q^{9} + 4 q^{11} + q^{12} + q^{13} - q^{14} + q^{16} - 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13650.cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13650.cx1 13650cp3 \([1, 0, 0, -2240088, -1290650208]\) \(79560762543506753209/479824800\) \(7497262500000\) \([2]\) \(245760\) \(2.0785\)  
13650.cx2 13650cp2 \([1, 0, 0, -140088, -20150208]\) \(19458380202497209/47698560000\) \(745290000000000\) \([2, 2]\) \(122880\) \(1.7319\)  
13650.cx3 13650cp4 \([1, 0, 0, -88088, -35282208]\) \(-4837870546133689/31603162500000\) \(-493799414062500000\) \([2]\) \(245760\) \(2.0785\)  
13650.cx4 13650cp1 \([1, 0, 0, -12088, -54208]\) \(12501706118329/7156531200\) \(111820800000000\) \([2]\) \(61440\) \(1.3854\) \(\Gamma_0(N)\)-optimal