Show commands: SageMath
Rank
The elliptic curves in class 13650.cx have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 13650.cx do not have complex multiplication.Modular form 13650.2.a.cx
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 13650.cx
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 13650.cx1 | 13650cp3 | \([1, 0, 0, -2240088, -1290650208]\) | \(79560762543506753209/479824800\) | \(7497262500000\) | \([2]\) | \(245760\) | \(2.0785\) | |
| 13650.cx2 | 13650cp2 | \([1, 0, 0, -140088, -20150208]\) | \(19458380202497209/47698560000\) | \(745290000000000\) | \([2, 2]\) | \(122880\) | \(1.7319\) | |
| 13650.cx3 | 13650cp4 | \([1, 0, 0, -88088, -35282208]\) | \(-4837870546133689/31603162500000\) | \(-493799414062500000\) | \([2]\) | \(245760\) | \(2.0785\) | |
| 13650.cx4 | 13650cp1 | \([1, 0, 0, -12088, -54208]\) | \(12501706118329/7156531200\) | \(111820800000000\) | \([2]\) | \(61440\) | \(1.3854\) | \(\Gamma_0(N)\)-optimal |