Show commands: SageMath
Rank
The elliptic curves in class 136242bk have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 136242bk do not have complex multiplication.Modular form 136242.2.a.bk
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 7 & 21 \\ 3 & 1 & 21 & 7 \\ 7 & 21 & 1 & 3 \\ 21 & 7 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 136242bk
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 136242.m3 | 136242bk1 | \([1, -1, 0, -3942, 100828]\) | \(-140625/8\) | \(-385445512008\) | \([]\) | \(145152\) | \(0.98006\) | \(\Gamma_0(N)\)-optimal |
| 136242.m4 | 136242bk2 | \([1, -1, 0, 21288, 179882]\) | \(3375/2\) | \(-632227001071122\) | \([]\) | \(435456\) | \(1.5294\) | |
| 136242.m2 | 136242bk3 | \([1, -1, 0, -79632, -17550080]\) | \(-1159088625/2097152\) | \(-101042228299825152\) | \([]\) | \(1016064\) | \(1.9530\) | |
| 136242.m1 | 136242bk4 | \([1, -1, 0, -8153232, -8958685312]\) | \(-189613868625/128\) | \(-40462528068551808\) | \([]\) | \(3048192\) | \(2.5023\) |