Properties

Label 13552.o
Number of curves $4$
Conductor $13552$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13552.o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13552.o do not have complex multiplication.

Modular form 13552.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} - 3 q^{9} - 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13552.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13552.o1 13552m3 \([0, 0, 0, -9996899, -12165949598]\) \(15226621995131793/2324168\) \(16864892462071808\) \([2]\) \(276480\) \(2.5193\)  
13552.o2 13552m4 \([0, 0, 0, -1168739, 186752610]\) \(24331017010833/12004097336\) \(87105497827989487616\) \([2]\) \(276480\) \(2.5193\)  
13552.o3 13552m2 \([0, 0, 0, -626659, -188908830]\) \(3750606459153/45914176\) \(333167671495622656\) \([2, 2]\) \(138240\) \(2.1727\)  
13552.o4 13552m1 \([0, 0, 0, -7139, -7637278]\) \(-5545233/3469312\) \(-25174416736387072\) \([2]\) \(69120\) \(1.8261\) \(\Gamma_0(N)\)-optimal