Properties

Label 13520.bf
Number of curves $1$
Conductor $13520$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bf1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 13520.bf1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13520.bf do not have complex multiplication.

Modular form 13520.2.a.bf

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{3} + q^{5} - 3 q^{7} + 6 q^{9} - 3 q^{11} + 3 q^{15} - 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 13520.bf

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13520.bf1 13520bf1 \([0, 0, 0, -2197, -28561]\) \(89856/25\) \(326292288400\) \([]\) \(29952\) \(0.91652\) \(\Gamma_0(N)\)-optimal