Properties

Label 13520.bc
Number of curves $4$
Conductor $13520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 13520.bc have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13520.bc do not have complex multiplication.

Modular form 13520.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} + 2 q^{7} + q^{9} + 2 q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 13520.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13520.bc1 13520bb3 \([0, -1, 0, -6985, 226992]\) \(488095744/125\) \(9653618000\) \([2]\) \(13824\) \(0.90183\)  
13520.bc2 13520bb4 \([0, -1, 0, -6140, 283100]\) \(-20720464/15625\) \(-19307236000000\) \([2]\) \(27648\) \(1.2484\)  
13520.bc3 13520bb1 \([0, -1, 0, -225, -820]\) \(16384/5\) \(386144720\) \([2]\) \(4608\) \(0.35252\) \(\Gamma_0(N)\)-optimal
13520.bc4 13520bb2 \([0, -1, 0, 620, -6228]\) \(21296/25\) \(-30891577600\) \([2]\) \(9216\) \(0.69910\)