Properties

Label 134862.bw
Number of curves $4$
Conductor $134862$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 134862.bw have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 134862.bw do not have complex multiplication.

Modular form 134862.2.a.bw

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + 2 q^{10} + 4 q^{11} + q^{12} - q^{14} + 2 q^{15} + q^{16} - 2 q^{17} + q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 134862.bw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
134862.bw1 134862n3 \([1, 0, 0, -3067607, 2067729663]\) \(661397832743623417/443352042\) \(2139975626493978\) \([2]\) \(2949120\) \(2.2578\)  
134862.bw2 134862n2 \([1, 0, 0, -192917, 31874205]\) \(164503536215257/4178071044\) \(20166750917818596\) \([2, 2]\) \(1474560\) \(1.9112\)  
134862.bw3 134862n1 \([1, 0, 0, -27297, -1017927]\) \(466025146777/177366672\) \(856115048709648\) \([2]\) \(737280\) \(1.5646\) \(\Gamma_0(N)\)-optimal
134862.bw4 134862n4 \([1, 0, 0, 31853, 101777675]\) \(740480746823/927484650666\) \(-4476791259196504794\) \([2]\) \(2949120\) \(2.2578\)