Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 13260a have rank \(0\).
L-function data
| Bad L-factors: | 
 | |||||||||||||||||||||
| Good L-factors: | 
 | |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 13260a do not have complex multiplication.Modular form 13260.2.a.a
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 13260a
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 13260.e1 | 13260a1 | \([0, -1, 0, -66841, -6625334]\) | \(2064139491706322944/1374181453125\) | \(21986903250000\) | \([2]\) | \(46080\) | \(1.4990\) | \(\Gamma_0(N)\)-optimal | 
| 13260.e2 | 13260a2 | \([0, -1, 0, -53836, -9293960]\) | \(-67407802159923664/107316650390625\) | \(-27473062500000000\) | \([2]\) | \(92160\) | \(1.8455\) | 
