Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-7492x+249131\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-7492xz^2+249131z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-606879x+179795889\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(35, 169)$ | $1.3208435264668073075513367817$ | $\infty$ |
$(101/4, 2197/8)$ | $1.6053173768414933003562975800$ | $\infty$ |
Integral points
\((35,\pm 169)\), \((2011,\pm 90077)\)
Invariants
Conductor: | $N$ | = | \( 132496 \) | = | $2^{4} \cdot 7^{2} \cdot 13^{2}$ |
|
Discriminant: | $\Delta$ | = | $639532885264$ | = | $2^{4} \cdot 7^{2} \cdot 13^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{12291328}{169} \) | = | $2^{8} \cdot 7 \cdot 13^{-2} \cdot 19^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0711879781659213759828899255$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.76665411892738097936715662634$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.7942083638864892$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.253985783444875$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.9464212742236700574415391217$ |
|
Real period: | $\Omega$ | ≈ | $0.91417894150022306996437277334$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.1175093607332404619257836581 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.117509361 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.914179 \cdot 1.946421 \cdot 4}{1^2} \\ & \approx 7.117509361\end{aligned}$$
Modular invariants
Modular form 132496.2.a.x
For more coefficients, see the Downloads section to the right.
Modular degree: | 193536 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | 1 | 4 | 4 | 0 |
$7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
$13$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cn | 2.2.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 28.12.0-14.a.1.1, level \( 28 = 2^{2} \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 12 & 1 \\ 23 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 4 \\ 24 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 24 \\ 20 & 17 \end{array}\right),\left(\begin{array}{rr} 11 & 24 \\ 6 & 17 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 20 & 23 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[28])$ is a degree-$16128$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/28\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 8281 = 7^{2} \cdot 13^{2} \) |
$7$ | additive | $14$ | \( 2704 = 2^{4} \cdot 13^{2} \) |
$13$ | additive | $98$ | \( 784 = 2^{4} \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 132496di consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 5096d1, its twist by $-52$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | \(\Q(\zeta_{7})^+\) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 4 | 6 | - | 2 | - | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | - | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.