Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5096.b1 |
5096b1 |
5096.b |
5096b |
$1$ |
$1$ |
\( 2^{3} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$364$ |
$12$ |
$0$ |
$0.155028067$ |
$1$ |
|
$8$ |
$4032$ |
$0.761668$ |
$12291328/169$ |
$0.79421$ |
$4.06085$ |
$[0, -1, 0, -2172, 39229]$ |
\(y^2=x^3-x^2-2172x+39229\) |
2.2.0.a.1, 14.6.0.a.1, 52.4.0-2.a.1.1, 364.12.0.? |
$[(82, 637)]$ |
5096.j1 |
5096d1 |
5096.j |
5096d |
$1$ |
$1$ |
\( 2^{3} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$364$ |
$12$ |
$0$ |
$0.679795429$ |
$1$ |
|
$4$ |
$576$ |
$-0.211287$ |
$12291328/169$ |
$0.79421$ |
$2.69309$ |
$[0, 1, 0, -44, -127]$ |
\(y^2=x^3+x^2-44x-127\) |
2.2.0.a.1, 14.6.0.a.1, 364.12.0.? |
$[(-4, 1)]$ |
10192.o1 |
10192h1 |
10192.o |
10192h |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$364$ |
$12$ |
$0$ |
$0.686201178$ |
$1$ |
|
$2$ |
$1152$ |
$-0.211287$ |
$12291328/169$ |
$0.79421$ |
$2.49084$ |
$[0, -1, 0, -44, 127]$ |
\(y^2=x^3-x^2-44x+127\) |
2.2.0.a.1, 14.6.0.a.1, 364.12.0.? |
$[(-1, 13)]$ |
10192.z1 |
10192b1 |
10192.z |
10192b |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$364$ |
$12$ |
$0$ |
$3.080787122$ |
$1$ |
|
$0$ |
$8064$ |
$0.761668$ |
$12291328/169$ |
$0.79421$ |
$3.75587$ |
$[0, 1, 0, -2172, -39229]$ |
\(y^2=x^3+x^2-2172x-39229\) |
2.2.0.a.1, 14.6.0.a.1, 52.4.0-2.a.1.1, 364.12.0.? |
$[(-107/2, 169/2)]$ |
40768.y1 |
40768u1 |
40768.y |
40768u |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 7^{2} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$728$ |
$12$ |
$0$ |
$2.449772426$ |
$1$ |
|
$4$ |
$9216$ |
$0.135287$ |
$12291328/169$ |
$0.79421$ |
$2.55733$ |
$[0, -1, 0, -177, -839]$ |
\(y^2=x^3-x^2-177x-839\) |
2.2.0.a.1, 14.6.0.a.1, 728.12.0.? |
$[(-8, 1), (-27/2, 13/2)]$ |
40768.bp1 |
40768cf1 |
40768.bp |
40768cf |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$728$ |
$12$ |
$0$ |
$5.864391177$ |
$1$ |
|
$0$ |
$64512$ |
$1.108242$ |
$12291328/169$ |
$0.79421$ |
$3.65716$ |
$[0, -1, 0, -8689, -305143]$ |
\(y^2=x^3-x^2-8689x-305143\) |
2.2.0.a.1, 14.6.0.a.1, 104.4.0.?, 728.12.0.? |
$[(-464/3, 1511/3)]$ |
40768.co1 |
40768cq1 |
40768.co |
40768cq |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$728$ |
$12$ |
$0$ |
$0.848638518$ |
$1$ |
|
$2$ |
$9216$ |
$0.135287$ |
$12291328/169$ |
$0.79421$ |
$2.55733$ |
$[0, 1, 0, -177, 839]$ |
\(y^2=x^3+x^2-177x+839\) |
2.2.0.a.1, 14.6.0.a.1, 728.12.0.? |
$[(10, 13)]$ |
40768.dg1 |
40768g1 |
40768.dg |
40768g |
$1$ |
$1$ |
\( 2^{6} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$728$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$64512$ |
$1.108242$ |
$12291328/169$ |
$0.79421$ |
$3.65716$ |
$[0, 1, 0, -8689, 305143]$ |
\(y^2=x^3+x^2-8689x+305143\) |
2.2.0.a.1, 14.6.0.a.1, 104.4.0.?, 728.12.0.? |
$[ ]$ |
45864.j1 |
45864bz1 |
45864.j |
45864bz |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$0.688131013$ |
$1$ |
|
$4$ |
$17280$ |
$0.338019$ |
$12291328/169$ |
$0.79421$ |
$2.75592$ |
$[0, 0, 0, -399, 3031]$ |
\(y^2=x^3-399x+3031\) |
2.2.0.a.1, 14.6.0.a.1, 1092.12.0.? |
$[(9, 13)]$ |
45864.bz1 |
45864bh1 |
45864.bz |
45864bh |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1.598214146$ |
$1$ |
|
$0$ |
$120960$ |
$1.310974$ |
$12291328/169$ |
$0.79421$ |
$3.84369$ |
$[0, 0, 0, -19551, -1039633]$ |
\(y^2=x^3-19551x-1039633\) |
2.2.0.a.1, 14.6.0.a.1, 156.4.0.?, 1092.12.0.? |
$[(-343/2, 637/2)]$ |
66248.n1 |
66248n1 |
66248.n |
66248n |
$1$ |
$1$ |
\( 2^{3} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 7^{8} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.2 |
2Cn |
$28$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$677376$ |
$2.044144$ |
$12291328/169$ |
$0.79421$ |
$4.50890$ |
$[0, -1, 0, -367124, 84717697]$ |
\(y^2=x^3-x^2-367124x+84717697\) |
2.2.0.a.1, 4.4.0-2.a.1.1, 14.6.0.a.1, 28.12.0-14.a.1.4 |
$[ ]$ |
66248.r1 |
66248u1 |
66248.r |
66248u |
$1$ |
$1$ |
\( 2^{3} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 7^{2} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$28$ |
$12$ |
$0$ |
$1.270625990$ |
$1$ |
|
$4$ |
$96768$ |
$1.071188$ |
$12291328/169$ |
$0.79421$ |
$3.45716$ |
$[0, 1, 0, -7492, -249131]$ |
\(y^2=x^3+x^2-7492x-249131\) |
2.2.0.a.1, 14.6.0.a.1, 28.12.0-14.a.1.2 |
$[(186, 2197)]$ |
91728.o1 |
91728bx1 |
91728.o |
91728bx |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$0.338019$ |
$12291328/169$ |
$0.79421$ |
$2.58874$ |
$[0, 0, 0, -399, -3031]$ |
\(y^2=x^3-399x-3031\) |
2.2.0.a.1, 14.6.0.a.1, 1092.12.0.? |
$[ ]$ |
91728.fk1 |
91728p1 |
91728.fk |
91728p |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 3^{6} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$1.310974$ |
$12291328/169$ |
$0.79421$ |
$3.61052$ |
$[0, 0, 0, -19551, 1039633]$ |
\(y^2=x^3-19551x+1039633\) |
2.2.0.a.1, 14.6.0.a.1, 156.4.0.?, 1092.12.0.? |
$[ ]$ |
127400.n1 |
127400bl1 |
127400.n |
127400bl |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1820$ |
$12$ |
$0$ |
$1.362057169$ |
$1$ |
|
$2$ |
$62208$ |
$0.593432$ |
$12291328/169$ |
$0.79421$ |
$2.77713$ |
$[0, -1, 0, -1108, -13663]$ |
\(y^2=x^3-x^2-1108x-13663\) |
2.2.0.a.1, 14.6.0.a.1, 1820.12.0.? |
$[(-19, 13)]$ |
127400.bn1 |
127400bc1 |
127400.bn |
127400bc |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1820$ |
$12$ |
$0$ |
$2.945373585$ |
$1$ |
|
$4$ |
$435456$ |
$1.566387$ |
$12291328/169$ |
$0.79421$ |
$3.77036$ |
$[0, 1, 0, -54308, 4795013]$ |
\(y^2=x^3+x^2-54308x+4795013\) |
2.2.0.a.1, 14.6.0.a.1, 260.4.0.?, 1820.12.0.? |
$[(122, 13)]$ |
132496.x1 |
132496di1 |
132496.x |
132496di |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 7^{2} \cdot 13^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$28$ |
$12$ |
$0$ |
$1.946421274$ |
$1$ |
|
$4$ |
$193536$ |
$1.071188$ |
$12291328/169$ |
$0.79421$ |
$3.25399$ |
$[0, -1, 0, -7492, 249131]$ |
\(y^2=x^3-x^2-7492x+249131\) |
2.2.0.a.1, 14.6.0.a.1, 28.12.0-14.a.1.1 |
$[(35, 169), (101/2, 2197/2)]$ |
132496.de1 |
132496dy1 |
132496.de |
132496dy |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{4} \cdot 7^{8} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.2 |
2Cn |
$28$ |
$12$ |
$0$ |
$4.525072445$ |
$1$ |
|
$0$ |
$1354752$ |
$2.044144$ |
$12291328/169$ |
$0.79421$ |
$4.24391$ |
$[0, 1, 0, -367124, -84717697]$ |
\(y^2=x^3+x^2-367124x-84717697\) |
2.2.0.a.1, 4.4.0-2.a.1.1, 14.6.0.a.1, 28.12.0-14.a.1.3 |
$[(-81611/15, 3121937/15)]$ |
254800.cp1 |
254800cp1 |
254800.cp |
254800cp |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$870912$ |
$1.566387$ |
$12291328/169$ |
$0.79421$ |
$3.56042$ |
$[0, -1, 0, -54308, -4795013]$ |
\(y^2=x^3-x^2-54308x-4795013\) |
2.2.0.a.1, 14.6.0.a.1, 260.4.0.?, 1820.12.0.? |
$[ ]$ |
254800.fv1 |
254800fv1 |
254800.fv |
254800fv |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$124416$ |
$0.593432$ |
$12291328/169$ |
$0.79421$ |
$2.62250$ |
$[0, 1, 0, -1108, 13663]$ |
\(y^2=x^3+x^2-1108x+13663\) |
2.2.0.a.1, 14.6.0.a.1, 1820.12.0.? |
$[ ]$ |
366912.bf1 |
366912bf1 |
366912.bf |
366912bf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$2184$ |
$12$ |
$0$ |
$2.162132551$ |
$1$ |
|
$2$ |
$1935360$ |
$1.657549$ |
$12291328/169$ |
$0.79421$ |
$3.54447$ |
$[0, 0, 0, -78204, -8317064]$ |
\(y^2=x^3-78204x-8317064\) |
2.2.0.a.1, 14.6.0.a.1, 312.4.0.?, 2184.12.0.? |
$[(-147, 49)]$ |
366912.cf1 |
366912cf1 |
366912.cf |
366912cf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$2184$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$1.657549$ |
$12291328/169$ |
$0.79421$ |
$3.54447$ |
$[0, 0, 0, -78204, 8317064]$ |
\(y^2=x^3-78204x+8317064\) |
2.2.0.a.1, 14.6.0.a.1, 312.4.0.?, 2184.12.0.? |
$[ ]$ |
366912.ol1 |
366912ol1 |
366912.ol |
366912ol |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$2184$ |
$12$ |
$0$ |
$3.982333136$ |
$1$ |
|
$0$ |
$276480$ |
$0.684593$ |
$12291328/169$ |
$0.79421$ |
$2.63324$ |
$[0, 0, 0, -1596, 24248]$ |
\(y^2=x^3-1596x+24248\) |
2.2.0.a.1, 14.6.0.a.1, 2184.12.0.? |
$[(253/3, 1079/3)]$ |
366912.po1 |
366912po1 |
366912.po |
366912po |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{10} \cdot 3^{6} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$2184$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$276480$ |
$0.684593$ |
$12291328/169$ |
$0.79421$ |
$2.63324$ |
$[0, 0, 0, -1596, -24248]$ |
\(y^2=x^3-1596x-24248\) |
2.2.0.a.1, 14.6.0.a.1, 2184.12.0.? |
$[ ]$ |