Properties

Label 132496.e
Number of curves $1$
Conductor $132496$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 132496.e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 132496.e do not have complex multiplication.

Modular form 132496.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} + q^{5} + 6 q^{9} - q^{11} - 3 q^{15} + 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 132496.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
132496.e1 132496dg1 \([0, 0, 0, -57967, 5274997]\) \(48384\) \(445209493600144\) \([]\) \(774144\) \(1.6011\) \(\Gamma_0(N)\)-optimal