Properties

Label 132496.a
Number of curves $1$
Conductor $132496$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 132496.a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 132496.a do not have complex multiplication.

Modular form 132496.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} - 4 q^{5} + 6 q^{9} - 3 q^{11} + 12 q^{15} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 132496.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
132496.a1 132496a1 \([0, 0, 0, -73096387, 436822501570]\) \(-24642171/32768\) \(-57435765516914305645150208\) \([]\) \(88058880\) \(3.6355\) \(\Gamma_0(N)\)-optimal