Properties

Label 13200k
Number of curves $1$
Conductor $13200$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 13200k1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 13200k do not have complex multiplication.

Modular form 13200.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{7} + q^{9} + q^{11} + 5 q^{13} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 13200k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
13200.g1 13200k1 \([0, -1, 0, -833, 47037]\) \(-25600/363\) \(-907500000000\) \([]\) \(21120\) \(0.97601\) \(\Gamma_0(N)\)-optimal