Properties

Label 131904bb
Number of curves $1$
Conductor $131904$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 131904bb1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(229\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 131904bb do not have complex multiplication.

Modular form 131904.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} - 4 q^{7} - 5 q^{11} + 4 q^{13} - q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 131904bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
131904.c1 131904bb1 \([0, 0, 0, -984, -11864]\) \(141150208/229\) \(170947584\) \([]\) \(84480\) \(0.47665\) \(\Gamma_0(N)\)-optimal