Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+50087x+5488042\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+50087xz^2+5488042z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+801397x+352036102\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-38, 1897)$ | $0.89675880354812093533834595370$ | $\infty$ |
$(-373/4, 369/8)$ | $0$ | $2$ |
Integral points
\( \left(-38, 1897\right) \), \( \left(-38, -1860\right) \), \( \left(287, 6447\right) \), \( \left(287, -6735\right) \), \( \left(1288, 46318\right) \), \( \left(1288, -47607\right) \)
Invariants
Conductor: | $N$ | = | \( 131495 \) | = | $5 \cdot 7 \cdot 13 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-21112663938900625$ | = | $-1 \cdot 5^{4} \cdot 7^{2} \cdot 13^{4} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{575722725759}{874680625} \) | = | $3^{3} \cdot 5^{-4} \cdot 7^{-2} \cdot 13^{-4} \cdot 47^{3} \cdot 59^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8177353539365756074134279642$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.40112868190846756728866065526$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9400617403938522$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.7808527244469525$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.89675880354812093533834595370$ |
|
Real period: | $\Omega$ | ≈ | $0.26033263155507258289419584694$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.7352892671657709363420275837 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.735289267 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.260333 \cdot 0.896759 \cdot 64}{2^2} \\ & \approx 3.735289267\end{aligned}$$
Modular invariants
Modular form 131495.2.a.d
For more coefficients, see the Downloads section to the right.
Modular degree: | 589824 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 123760 = 2^{4} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 18735 & 7446 \\ 65994 & 91427 \end{array}\right),\left(\begin{array}{rr} 95201 & 94656 \\ 2244 & 7345 \end{array}\right),\left(\begin{array}{rr} 43691 & 110126 \\ 84830 & 91291 \end{array}\right),\left(\begin{array}{rr} 74257 & 94656 \\ 42228 & 7345 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 4 & 49 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 69616 & 25041 \\ 54145 & 69616 \end{array}\right),\left(\begin{array}{rr} 58239 & 0 \\ 0 & 123759 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 64 & 205 \end{array}\right),\left(\begin{array}{rr} 123745 & 16 \\ 123744 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[123760])$ is a degree-$254294523138539520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/123760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 289 = 17^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 26299 = 7 \cdot 13 \cdot 17^{2} \) |
$7$ | split multiplicative | $8$ | \( 18785 = 5 \cdot 13 \cdot 17^{2} \) |
$13$ | split multiplicative | $14$ | \( 10115 = 5 \cdot 7 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 455 = 5 \cdot 7 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 131495.d
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 455.a4, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-17}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.13142191046656.6 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.23854432810000.13 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | ss | nonsplit | split | ss | split | add | ss | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 10 | 3,1 | 1 | 2 | 3,1 | 2 | - | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 2 | 0,0 | 0 | 0 | 0,0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.