Show commands: SageMath
Rank
The elliptic curves in class 130050em have rank \(2\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 130050em do not have complex multiplication.Modular form 130050.2.a.em
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 130050em
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 130050.e8 | 130050em1 | \([1, -1, 0, 96183, -35278659]\) | \(357911/2160\) | \(-593874713283750000\) | \([2]\) | \(1769472\) | \(2.0923\) | \(\Gamma_0(N)\)-optimal |
| 130050.e6 | 130050em2 | \([1, -1, 0, -1204317, -460542159]\) | \(702595369/72900\) | \(20043271573326562500\) | \([2, 2]\) | \(3538944\) | \(2.4389\) | |
| 130050.e7 | 130050em3 | \([1, -1, 0, -879192, 1038609216]\) | \(-273359449/1536000\) | \(-422310907224000000000\) | \([2]\) | \(5308416\) | \(2.6417\) | |
| 130050.e5 | 130050em4 | \([1, -1, 0, -4455567, 3119084091]\) | \(35578826569/5314410\) | \(1461154497695506406250\) | \([2]\) | \(7077888\) | \(2.7855\) | |
| 130050.e4 | 130050em5 | \([1, -1, 0, -18761067, -31272638409]\) | \(2656166199049/33750\) | \(9279292395058593750\) | \([2]\) | \(7077888\) | \(2.7855\) | |
| 130050.e3 | 130050em6 | \([1, -1, 0, -21687192, 38805129216]\) | \(4102915888729/9000000\) | \(2474477972015625000000\) | \([2, 2]\) | \(10616832\) | \(2.9882\) | |
| 130050.e1 | 130050em7 | \([1, -1, 0, -346812192, 2486021004216]\) | \(16778985534208729/81000\) | \(22270301748140625000\) | \([2]\) | \(21233664\) | \(3.3348\) | |
| 130050.e2 | 130050em8 | \([1, -1, 0, -29490192, 8396838216]\) | \(10316097499609/5859375000\) | \(1610988263031005859375000\) | \([2]\) | \(21233664\) | \(3.3348\) |