Properties

Label 130050bb
Number of curves $2$
Conductor $130050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 130050bb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 130050bb do not have complex multiplication.

Modular form 130050.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4 q^{7} + q^{8} + 3 q^{11} - 2 q^{13} - 4 q^{14} + q^{16} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 130050bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
130050.ef2 130050bb1 \([1, -1, 1, -360905, 84001097]\) \(-1579268174113/10077696\) \(-33174672984000000\) \([]\) \(1959552\) \(2.0073\) \(\Gamma_0(N)\)-optimal
130050.ef1 130050bb2 \([1, -1, 1, -29277905, 60983203097]\) \(-843137281012581793/216\) \(-711048375000\) \([]\) \(5878656\) \(2.5566\)