Properties

Label 130050.ed
Number of curves $2$
Conductor $130050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ed1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 130050.ed have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 130050.ed do not have complex multiplication.

Modular form 130050.2.a.ed

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4 q^{7} + q^{8} + 5 q^{13} - 4 q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 130050.ed

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
130050.ed1 130050d2 \([1, -1, 1, -84403805, 298483068197]\) \(33475791145/192\) \(381399538086675000000\) \([3]\) \(15863040\) \(3.1400\)  
130050.ed2 130050d1 \([1, -1, 1, -1496930, 18318197]\) \(186745/108\) \(214537240173754687500\) \([]\) \(5287680\) \(2.5907\) \(\Gamma_0(N)\)-optimal