Properties

Label 129600.cy
Number of curves $4$
Conductor $129600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 129600.cy have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129600.cy do not have complex multiplication.

Modular form 129600.2.a.cy

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} + 3 q^{11} + 2 q^{13} + 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 129600.cy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129600.cy1 129600bh4 \([0, 0, 0, -15511500, -23514138000]\) \(-189613868625/128\) \(-278628139008000000\) \([]\) \(3483648\) \(2.6631\)  
129600.cy2 129600bh3 \([0, 0, 0, -151500, -46106000]\) \(-1159088625/2097152\) \(-695784701952000000\) \([]\) \(1161216\) \(2.1138\)  
129600.cy3 129600bh1 \([0, 0, 0, -7500, 262000]\) \(-140625/8\) \(-2654208000000\) \([]\) \(165888\) \(1.1409\) \(\Gamma_0(N)\)-optimal
129600.cy4 129600bh2 \([0, 0, 0, 40500, 486000]\) \(3375/2\) \(-4353564672000000\) \([]\) \(497664\) \(1.6902\)