Show commands: SageMath
                    
            
    Rank
The elliptic curves in class 129600.p have rank \(0\).
L-function data
| Bad L-factors: | 
 | |||||||||||||||||||||||||||
| Good L-factors: | 
 | |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 129600.p do not have complex multiplication.Modular form 129600.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 129600.p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | 
|---|---|---|---|---|---|---|---|---|
| 129600.p1 | 129600dq1 | \([0, 0, 0, -79500, 8630000]\) | \(-6699465/2\) | \(-16588800000000\) | \([]\) | \(518400\) | \(1.5149\) | \(\Gamma_0(N)\)-optimal | 
| 129600.p2 | 129600dq2 | \([0, 0, 0, 40500, 31590000]\) | \(135/8\) | \(-435356467200000000\) | \([]\) | \(1555200\) | \(2.0642\) | 
