Properties

Label 129472.bh
Number of curves $1$
Conductor $129472$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 129472.bh1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 5 T + 29 T^{2}\) 1.29.af
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129472.bh do not have complex multiplication.

Modular form 129472.2.a.bh

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2 q^{9} + 6 q^{13} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 129472.bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129472.bh1 129472dr1 \([0, -1, 0, -8188, 274946]\) \(136000/7\) \(3125139333568\) \([]\) \(156672\) \(1.1553\) \(\Gamma_0(N)\)-optimal