Show commands: SageMath
Rank
The elliptic curves in class 129360ex have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 129360ex do not have complex multiplication.Modular form 129360.2.a.ex
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 129360ex
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
129360.cq3 | 129360ex1 | \([0, -1, 0, -1092520, -439168400]\) | \(299270638153369/1069200\) | \(515237113036800\) | \([2]\) | \(1474560\) | \(2.0409\) | \(\Gamma_0(N)\)-optimal |
129360.cq2 | 129360ex2 | \([0, -1, 0, -1108200, -425896848]\) | \(312341975961049/17862322500\) | \(8607680019671040000\) | \([2, 2]\) | \(2949120\) | \(2.3875\) | |
129360.cq4 | 129360ex3 | \([0, -1, 0, 796920, -1739667600]\) | \(116149984977671/2779502343750\) | \(-1339415229398400000000\) | \([2]\) | \(5898240\) | \(2.7341\) | |
129360.cq1 | 129360ex4 | \([0, -1, 0, -3264200, 1737002352]\) | \(7981893677157049/1917731420550\) | \(924136177239191347200\) | \([2]\) | \(5898240\) | \(2.7341\) |