Properties

Label 129360ex
Number of curves $4$
Conductor $129360$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ex1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 129360ex have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 129360ex do not have complex multiplication.

Modular form 129360.2.a.ex

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} - q^{11} - 2 q^{13} - q^{15} + 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 129360ex

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
129360.cq3 129360ex1 \([0, -1, 0, -1092520, -439168400]\) \(299270638153369/1069200\) \(515237113036800\) \([2]\) \(1474560\) \(2.0409\) \(\Gamma_0(N)\)-optimal
129360.cq2 129360ex2 \([0, -1, 0, -1108200, -425896848]\) \(312341975961049/17862322500\) \(8607680019671040000\) \([2, 2]\) \(2949120\) \(2.3875\)  
129360.cq4 129360ex3 \([0, -1, 0, 796920, -1739667600]\) \(116149984977671/2779502343750\) \(-1339415229398400000000\) \([2]\) \(5898240\) \(2.7341\)  
129360.cq1 129360ex4 \([0, -1, 0, -3264200, 1737002352]\) \(7981893677157049/1917731420550\) \(924136177239191347200\) \([2]\) \(5898240\) \(2.7341\)