Show commands: SageMath
Rank
The elliptic curves in class 12880q have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 12880q do not have complex multiplication.Modular form 12880.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 12880q
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 12880.k4 | 12880q1 | \([0, 0, 0, 37, -150838]\) | \(1367631/2399636575\) | \(-9828911411200\) | \([2]\) | \(23040\) | \(1.1719\) | \(\Gamma_0(N)\)-optimal |
| 12880.k3 | 12880q2 | \([0, 0, 0, -42283, -3290982]\) | \(2041085246738049/38897700625\) | \(159324981760000\) | \([2, 2]\) | \(46080\) | \(1.5185\) | |
| 12880.k1 | 12880q3 | \([0, 0, 0, -673403, -212696598]\) | \(8244966675515989329/3081640625\) | \(12622400000000\) | \([2]\) | \(92160\) | \(1.8651\) | |
| 12880.k2 | 12880q4 | \([0, 0, 0, -88283, 5145418]\) | \(18577831198352049/7958740140575\) | \(32598999615795200\) | \([4]\) | \(92160\) | \(1.8651\) |