Properties

Label 12870br
Number of curves $2$
Conductor $12870$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("br1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12870br have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12870br do not have complex multiplication.

Modular form 12870.2.a.br

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} + 4 q^{7} + q^{8} - q^{10} + q^{11} - q^{13} + 4 q^{14} + q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 12870br

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12870.bq2 12870br1 \([1, -1, 1, -1238, -16923]\) \(-287626699801/9518080\) \(-6938680320\) \([2]\) \(11520\) \(0.66303\) \(\Gamma_0(N)\)-optimal
12870.bq1 12870br2 \([1, -1, 1, -19958, -1080219]\) \(1205943158724121/1258400\) \(917373600\) \([2]\) \(23040\) \(1.0096\)