Properties

Label 12870.g
Number of curves $4$
Conductor $12870$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12870.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12870.g do not have complex multiplication.

Modular form 12870.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{8} + q^{10} + q^{11} + q^{13} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 12870.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12870.g1 12870m3 \([1, -1, 0, -132887040, -589586574304]\) \(355995140004443961140387841/2768480\) \(2018221920\) \([2]\) \(860160\) \(2.8075\)  
12870.g2 12870m4 \([1, -1, 0, -8324160, -9167111200]\) \(87501897507774086005761/815991377947460000\) \(594857714523698340000\) \([2]\) \(860160\) \(2.8075\)  
12870.g3 12870m2 \([1, -1, 0, -8305440, -9210732544]\) \(86912881496074271306241/7664481510400\) \(5587407021081600\) \([2, 2]\) \(430080\) \(2.4609\)  
12870.g4 12870m1 \([1, -1, 0, -517920, -144501760]\) \(-21075830718885163521/199306463150080\) \(-145294411636408320\) \([2]\) \(215040\) \(2.1144\) \(\Gamma_0(N)\)-optimal