Properties

Label 1274.h
Number of curves $1$
Conductor $1274$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("h1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1274.h1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1274.h do not have complex multiplication.

Modular form 1274.2.a.h

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 3 q^{3} + q^{4} + 4 q^{5} - 3 q^{6} + q^{8} + 6 q^{9} + 4 q^{10} + q^{11} - 3 q^{12} + q^{13} - 12 q^{15} + q^{16} + 6 q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1274.h

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1274.h1 1274o1 \([1, -1, 1, 162, 1299]\) \(4019679/8918\) \(-1049193782\) \([]\) \(1728\) \(0.41510\) \(\Gamma_0(N)\)-optimal