Properties

Label 1274.g
Number of curves $1$
Conductor $1274$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1274.g1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1274.g do not have complex multiplication.

Modular form 1274.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - 2 q^{5} - q^{6} - q^{8} - 2 q^{9} + 2 q^{10} + q^{11} + q^{12} - q^{13} - 2 q^{15} + q^{16} + 4 q^{17} + 2 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1274.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1274.g1 1274b1 \([1, 0, 1, -222, -3384]\) \(-29791/104\) \(-4196775128\) \([]\) \(672\) \(0.53247\) \(\Gamma_0(N)\)-optimal