Properties

Label 1274.e
Number of curves $1$
Conductor $1274$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1274.e1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1274.e do not have complex multiplication.

Modular form 1274.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 3 q^{9} + q^{11} - q^{13} + q^{16} - q^{17} + 3 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1274.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1274.e1 1274a1 \([1, -1, 0, -107, -6651]\) \(-23625/3328\) \(-19185257728\) \([]\) \(672\) \(0.65252\) \(\Gamma_0(N)\)-optimal