Properties

Label 127050fa
Number of curves $1$
Conductor $127050$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fa1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 127050fa1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 127050fa do not have complex multiplication.

Modular form 127050.2.a.fa

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} - q^{12} + q^{13} - q^{14} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 127050fa

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
127050.ft1 127050fa1 \([1, 1, 1, -3693, 101421]\) \(-125768785/30618\) \(-1356041367450\) \([]\) \(235200\) \(1.0464\) \(\Gamma_0(N)\)-optimal