Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-320x+1883\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-320xz^2+1883z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-5115x+115414\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{6}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-9, 67)$ | $0$ | $6$ |
Integral points
\( \left(-9, 67\right) \), \( \left(-9, -59\right) \), \( \left(19, 39\right) \), \( \left(19, -59\right) \)
Invariants
| Conductor: | $N$ | = | \( 126 \) | = | $2 \cdot 3^{2} \cdot 7$ |
|
| Discriminant: | $\Delta$ | = | $686128968$ | = | $2^{3} \cdot 3^{6} \cdot 7^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{4956477625}{941192} \) | = | $2^{-3} \cdot 5^{3} \cdot 7^{-6} \cdot 11^{3} \cdot 31^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.41310098042308445758078235484$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.13620516391097038811684026362$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0082122835525031$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.978897727115397$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $1.5305454480783489375703797074$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 36 $ = $ 3\cdot2\cdot( 2 \cdot 3 ) $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $6$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.5305454480783489375703797074 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.530545448 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.530545 \cdot 1.000000 \cdot 36}{6^2} \\ & \approx 1.530545448\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 48 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $7$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.6 |
| $3$ | 3Cs.1.1 | 3.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 325 & 276 \\ 18 & 163 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 251 & 468 \\ 0 & 475 \end{array}\right),\left(\begin{array}{rr} 469 & 36 \\ 468 & 37 \end{array}\right),\left(\begin{array}{rr} 445 & 36 \\ 174 & 277 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 249 & 352 \end{array}\right),\left(\begin{array}{rr} 19 & 24 \\ 432 & 307 \end{array}\right)$.
The torsion field $K:=\Q(E[504])$ is a degree-$13934592$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/504\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 9 = 3^{2} \) |
| $3$ | additive | $2$ | \( 1 \) |
| $7$ | split multiplicative | $8$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 126a
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 14a2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z \oplus \Z/6\Z\) | 2.0.3.1-196.2-a4 |
| $4$ | 4.0.14112.1 | \(\Z/12\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.4.16647192576.5 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.12745506816.13 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.0.199148544.2 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
| $9$ | 9.3.12004512424128.4 | \(\Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
| $16$ | 16.0.162447943996702457856.4 | \(\Z/6\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.0.3674701490222020866048.1 | \(\Z/3\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.0.432324955623130532869681152.2 | \(\Z/3\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.0.144784752906623254803.2 | \(\Z/3\Z \oplus \Z/18\Z\) | not in database |
| $18$ | 18.6.302217048444986481089572522426368.3 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 |
|---|---|---|---|
| Reduction type | split | add | split |
| $\lambda$-invariant(s) | 2 | - | 1 |
| $\mu$-invariant(s) | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.