Properties

Label 126.2.a.b
Level $126$
Weight $2$
Character orbit 126.a
Self dual yes
Analytic conductor $1.006$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(1,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{7} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} + q^{7} + q^{8} - 4 q^{13} + q^{14} + q^{16} - 6 q^{17} + 2 q^{19} - 5 q^{25} - 4 q^{26} + q^{28} + 6 q^{29} - 4 q^{31} + q^{32} - 6 q^{34} + 2 q^{37} + 2 q^{38} - 6 q^{41} + 8 q^{43} + 12 q^{47} + q^{49} - 5 q^{50} - 4 q^{52} - 6 q^{53} + q^{56} + 6 q^{58} + 6 q^{59} + 8 q^{61} - 4 q^{62} + q^{64} - 4 q^{67} - 6 q^{68} + 2 q^{73} + 2 q^{74} + 2 q^{76} + 8 q^{79} - 6 q^{82} + 6 q^{83} + 8 q^{86} + 6 q^{89} - 4 q^{91} + 12 q^{94} - 10 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 0 0 1.00000 1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.2.a.b 1
3.b odd 2 1 14.2.a.a 1
4.b odd 2 1 1008.2.a.h 1
5.b even 2 1 3150.2.a.i 1
5.c odd 4 2 3150.2.g.j 2
7.b odd 2 1 882.2.a.i 1
7.c even 3 2 882.2.g.c 2
7.d odd 6 2 882.2.g.d 2
8.b even 2 1 4032.2.a.w 1
8.d odd 2 1 4032.2.a.r 1
9.c even 3 2 1134.2.f.f 2
9.d odd 6 2 1134.2.f.l 2
12.b even 2 1 112.2.a.c 1
15.d odd 2 1 350.2.a.f 1
15.e even 4 2 350.2.c.d 2
21.c even 2 1 98.2.a.a 1
21.g even 6 2 98.2.c.a 2
21.h odd 6 2 98.2.c.b 2
24.f even 2 1 448.2.a.a 1
24.h odd 2 1 448.2.a.g 1
28.d even 2 1 7056.2.a.bd 1
33.d even 2 1 1694.2.a.e 1
39.d odd 2 1 2366.2.a.j 1
39.f even 4 2 2366.2.d.b 2
48.i odd 4 2 1792.2.b.c 2
48.k even 4 2 1792.2.b.g 2
51.c odd 2 1 4046.2.a.f 1
57.d even 2 1 5054.2.a.c 1
60.h even 2 1 2800.2.a.g 1
60.l odd 4 2 2800.2.g.h 2
69.c even 2 1 7406.2.a.a 1
84.h odd 2 1 784.2.a.b 1
84.j odd 6 2 784.2.i.i 2
84.n even 6 2 784.2.i.c 2
105.g even 2 1 2450.2.a.t 1
105.k odd 4 2 2450.2.c.c 2
168.e odd 2 1 3136.2.a.z 1
168.i even 2 1 3136.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.2.a.a 1 3.b odd 2 1
98.2.a.a 1 21.c even 2 1
98.2.c.a 2 21.g even 6 2
98.2.c.b 2 21.h odd 6 2
112.2.a.c 1 12.b even 2 1
126.2.a.b 1 1.a even 1 1 trivial
350.2.a.f 1 15.d odd 2 1
350.2.c.d 2 15.e even 4 2
448.2.a.a 1 24.f even 2 1
448.2.a.g 1 24.h odd 2 1
784.2.a.b 1 84.h odd 2 1
784.2.i.c 2 84.n even 6 2
784.2.i.i 2 84.j odd 6 2
882.2.a.i 1 7.b odd 2 1
882.2.g.c 2 7.c even 3 2
882.2.g.d 2 7.d odd 6 2
1008.2.a.h 1 4.b odd 2 1
1134.2.f.f 2 9.c even 3 2
1134.2.f.l 2 9.d odd 6 2
1694.2.a.e 1 33.d even 2 1
1792.2.b.c 2 48.i odd 4 2
1792.2.b.g 2 48.k even 4 2
2366.2.a.j 1 39.d odd 2 1
2366.2.d.b 2 39.f even 4 2
2450.2.a.t 1 105.g even 2 1
2450.2.c.c 2 105.k odd 4 2
2800.2.a.g 1 60.h even 2 1
2800.2.g.h 2 60.l odd 4 2
3136.2.a.e 1 168.i even 2 1
3136.2.a.z 1 168.e odd 2 1
3150.2.a.i 1 5.b even 2 1
3150.2.g.j 2 5.c odd 4 2
4032.2.a.r 1 8.d odd 2 1
4032.2.a.w 1 8.b even 2 1
4046.2.a.f 1 51.c odd 2 1
5054.2.a.c 1 57.d even 2 1
7056.2.a.bd 1 28.d even 2 1
7406.2.a.a 1 69.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(126))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 8 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 6 \) Copy content Toggle raw display
$61$ \( T - 8 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T - 6 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T + 10 \) Copy content Toggle raw display
show more
show less